A Semantic Segmentation Method for Remote Sensing Images Based on the Swin Transformer Fusion Gabor Filter

被引:14
|
作者
Feng, Dongdong
Zhang, Zhihua [1 ]
Yan, Kun
机构
[1] Lanzhou Jiaotong Univ, Fac Geomat, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Image segmentation; Feature extraction; Transformers; Remote sensing; Convolution; Semantics; Image edge detection; FAM; Gabor filter; remote sensing; semantic segmentation; Swin transformer; SCENE CLASSIFICATION; ATTENTION; MODEL;
D O I
10.1109/ACCESS.2022.3193248
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Semantic segmentation of remote sensing images is increasingly important in urban planning, autonomous driving, disaster monitoring, and land cover classification. With the development of high-resolution remote sensing satellite technology, multilevel, large-scale, and high-precision segmentation has become the focus of current research. High-resolution remote sensing images have high intraclass diversity and low interclass separability, which pose challenges to the precision of the detailed representation of multiscale information. In this paper, a semantic segmentation method for remote sensing images based on Swin Transformer fusion with a Gabor filter is proposed. First, a Swin Transformer is used as the backbone network to extract image information at different levels. Then, the texture and edge features of the input image are extracted with a Gabor filter, and the multilevel features are merged by introducing a feature aggregation module (FAM) and an attentional embedding module (AEM). Finally, the segmentation result is optimized with the fully connected conditional random field (FC-CRF). Our proposed method, called Swin-S-GF, its mean Intersection over Union (mIoU) scored 80.14%, 66.50%, and 70.61% on the large-scale classification set, the fine land-cover classification set, and the "AI + Remote Sensing imaging dataset" (AI+RS dataset), respectively. Compared with DeepLabV3, mIoU increased by 0.67%, 3.43%, and 3.80%, respectively. Therefore, we believe that this model provides a good tool for the semantic segmentation of high-precision remote sensing images.
引用
下载
收藏
页码:77432 / 77451
页数:20
相关论文
共 50 条
  • [31] Swin-CDSA: The Semantic Segmentation of Remote Sensing Images Based on Cascaded Depthwise Convolution and Spatial Attention Mechanism
    Kang, Yuhan
    Ji, Jian
    Xu, Hekai
    Yang, Yong
    Chen, Peng
    Zhao, Hui
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [32] Bidirectional Feature Fusion and Enhanced Alignment Based Multimodal Semantic Segmentation for Remote Sensing Images
    Liu, Qianqian
    Wang, Xili
    REMOTE SENSING, 2024, 16 (13)
  • [33] Semantic Segmentation of Remote-Sensing Images Based on Multiscale Feature Fusion and Attention Refinement
    He, Xin
    Zhou, Yong
    Zhao, Jiaqi
    Zhang, Man
    Yao, Rui
    Liu, Bing
    Li, Haichao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [34] Semantic Segmentation of Remote-Sensing Images Based on Multiscale Feature Fusion and Attention Refinement
    He, Xin
    Zhou, Yong
    Zhao, Jiaqi
    Zhang, Man
    Yao, Rui
    Liu, Bing
    Li, Haichao
    IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [35] A Semantic Segmentation Method of Remote Sensing Image Based on Feature Fusion and Attention Mechanism
    Wang, Yiqin
    Dong, Yunyun
    Journal of Information Processing Systems, 2024, 20 (05): : 640 - 653
  • [36] SMBCNet: A Transformer-Based Approach for Change Detection in Remote Sensing Images through Semantic Segmentation
    Feng, Jiangfan
    Yang, Xinyu
    Gu, Zhujun
    Zeng, Maimai
    Zheng, Wei
    REMOTE SENSING, 2023, 15 (14)
  • [37] Semantic Segmentation Method for Remote Sensing Images Based on Improved DeepLabV3+
    Su Zhipeng
    Li Jingwen
    Jiang Jianwu
    Lu Yanling
    Zhu Ming
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (06)
  • [38] A semantic segmentation method for remote sensing images based on multiple contextual feature extraction
    He Shumeng
    Xu Gaodi
    Yang Houqun
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (02):
  • [39] A Semantic Segmentation Method for Remote Sensing Images based on Deeplab v3
    Qian, Zhaoyong
    Cao, Yuhua
    Shi, Zengkai
    Qiu, Luyi
    Shi, Chenguang
    2021 2ND INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2021), 2021, : 396 - 400
  • [40] Semantic Segmentation on Remote Sensing Images with Multi-Scale Feature Fusion
    Zhang J.
    Jin Q.
    Wang H.
    Da C.
    Xiang S.
    Pan C.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (09): : 1509 - 1517