SPECTRAL-SPATIAL HYPERSPECTRAL CLASSIFICATION VIA SHAPE-ADAPTIVE SPARSE REPRESENTATION

被引:7
|
作者
Fu, Wei [1 ]
Li, Shutao [1 ]
Fang, Leyuan [1 ]
Kang, Xudong [1 ]
Benediktsson, Jon Atli
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
关键词
hyperspectral image; classification; shape-adaptive; sparse representation; spatial information; PURSUIT;
D O I
10.1109/IGARSS.2014.6947219
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a new spectral-spatial hyperspectral classification method named the shape-adaptive sparse representation (SASR). The fixed window is not suitable for all pixels of hyperspectral image (HSI) to search local similar regions. In order to overcome the drawback, we propose to apply the shape-adaptive algorithm to exploit the contextual spatial information of HSI. Furthermore, the hyperspectral classification is implemented by incorporating the spatial contextual information of HSI into the sparse representation classification model. Experimental results demonstrate the superiority of the proposed SASR method over both classical and state-of-the-art approaches.
引用
收藏
页码:3430 / 3433
页数:4
相关论文
共 50 条
  • [41] Hyperspectral image classification based on spatial and spectral features and sparse representation
    Jing-Hui Yang
    Li-Guo Wang
    Jin-Xi Qian
    Applied Geophysics, 2014, 11 : 489 - 499
  • [42] Spectral-Spatial Mamba for Hyperspectral Image Classification
    Huang, Lingbo
    Chen, Yushi
    He, Xin
    REMOTE SENSING, 2024, 16 (13)
  • [43] Hyperspectral image classification based on spatial and spectral features and sparse representation
    Yang Jing-Hui
    Wang Li-Guo
    Qian Jin-Xi
    APPLIED GEOPHYSICS, 2014, 11 (04) : 489 - 499
  • [44] Destriping hyperspectral imagery via spectral-spatial low-rank representation
    Wang, Yulong
    Zou, Cuiming
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2017, 15 (06)
  • [45] Unsupervised Spectral-Spatial Feature Learning With Stacked Sparse Autoencoder for Hyperspectral Imagery Classification
    Tao, Chao
    Pan, Hongbo
    Li, Yansheng
    Zou, Zhengrou
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (12) : 2438 - 2442
  • [46] Efficient Spectral-Spatial Fusion With Multiscale and Adaptive Attention for Hyperspectral Image Classification
    Wan, Xiaoqing
    Chen, Feng
    Gao, Weizhe
    He, Yupeng
    Liu, Hui
    Li, Zhize
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 1196 - 1211
  • [47] Spectral-Spatial Classification of Hyperspectral Images With a Superpixel-Based Discriminative Sparse Model
    Fang, Leyuan
    Li, Shutao
    Kang, Xudong
    Benediktsson, Jon Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (08): : 4186 - 4201
  • [48] Adaptive Spectral-Spatial Multiscale Contextual Feature Extraction for Hyperspectral Image Classification
    Wang, Di
    Du, Bo
    Zhang, Liangpei
    Xu, Yonghao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (03): : 2461 - 2477
  • [49] Spectral-Spatial Hyperspectral Image Classification Using Superpixel-based Spatial Pyramid Representation
    Fan, Jiayuan
    Tan, Hui Li
    Toomik, Maria
    Lu, Shijian
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXII, 2016, 10004
  • [50] Spectral-Spatial Classification of Hyperspectral Imagery Based on Stacked Sparse Autoencoder and Random Forest
    Zhao, Chunhui
    Wan, Xiaoqing
    Zhao, Genping
    Cui, Bing
    Liu, Wu
    Qi, Bin
    EUROPEAN JOURNAL OF REMOTE SENSING, 2017, 50 (01) : 47 - 63