Iterative Learning with Open-set Noisy Labels

被引:183
|
作者
Wang, Yisen [1 ,2 ]
Liu, Weiyang [2 ]
Ma, Xingjun [3 ]
Bailey, James [3 ]
Zha, Hongyuan [2 ]
Song, Le [2 ]
Xia, Shu-Tao [1 ]
机构
[1] Tsinghua Univ, Beijing, Peoples R China
[2] Georgia Inst Technol, Atlanta, GA 30332 USA
[3] Univ Melbourne, Melbourne, Vic, Australia
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR.2018.00906
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Large-scale datasets possessing clean label annotations are crucial for training Convolutional Neural Networks (CNNs). However, labeling large-scale data can be very costly and error-prone, and even high-quality datasets are likely to contain noisy (incorrect) labels. Existing works usually employ a closed-set assumption, whereby the samples associated with noisy labels possess a true class contained within the set of known classes in the training data. However, such an assumption is too restrictive for many applications, since samples associated with noisy labels might in fact possess a true class that is not present in the training data. We refer to this more complex scenario as the open-set noisy label problem and show that it is nontrivial in order to make accurate predictions. To address this problem, we propose a novel iterative learning framework for training CNNs on datasets with open-set noisy labels. Our approach detects noisy labels and learns deep discriminative features in an iterative fashion. To benefit from the noisy label detection, we design a Siamese network to encourage clean labels and noisy labels to be dissimilar. A reweighting module is also applied to simultaneously emphasize the learning from clean labels and reduce the effect caused by noisy labels. Experiments on CIFAR-10, ImageNet and real-world noisy (web-search) datasets demonstrate that our proposed model can robustly train CNNs in the presence of a high proportion of open-set as well as closed-set noisy labels.
引用
收藏
页码:8688 / 8696
页数:9
相关论文
共 50 条
  • [21] Open-Set Representation Learning through Combinatorial Embedding
    Kim, Geeho
    Kang, Junoh
    Han, Bohyung
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 19744 - 19753
  • [22] Classification-Reconstruction Learning for Open-Set Recognition
    Yoshihashi, Ryota
    Shao, Wen
    Kawakami, Rei
    You, Shaodi
    Iida, Makoto
    Naemura, Takeshi
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 4011 - 4020
  • [23] Open-Set Plankton Recognition Using Similarity Learning
    Mohamed, Ola Badreldeen Bdawy
    Eerola, Thomas
    Kraft, Kaisa
    Lensu, Lasse
    Kalviainen, Heikki
    ADVANCES IN VISUAL COMPUTING, ISVC 2022, PT I, 2022, 13598 : 174 - 183
  • [24] Open-set iris recognition based on deep learning
    Sun, Jie
    Zhao, Shipeng
    Miao, Sheng
    Wang, Xuan
    Yu, Yanan
    IET IMAGE PROCESSING, 2022, 16 (09) : 2361 - 2372
  • [25] Learning multiple gaussian prototypes for open-set recognition
    Liu, Jiaming
    Tian, Jun
    Han, Wei
    Qin, Zhili
    Fan, Yulu
    Shao, Junming
    INFORMATION SCIENCES, 2023, 626 : 738 - 753
  • [26] Deep Active Learning via Open-Set Recognition
    Mandivarapu, Jaya Krishna
    Camp, Blake
    Estrada, Rolando
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5
  • [27] OPEN-SET OCT IMAGE RECOGNITION WITH SYNTHETIC LEARNING
    Xiao, Yuting
    Gao, Shenghua
    Chai, Zhengjie
    Zhou, Kang
    Zhang, Tianyang
    Zhao, Yitian
    Cheng, Jun
    Liu, Jiang
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 1788 - 1792
  • [28] Open-set learning context recognizing in mobile learning: Problem and methodology
    Li, Jin
    Wang, Jingxin
    Guo, Longjiang
    Ren, Meirui
    Hao, Fei
    ICT EXPRESS, 2024, 10 (04): : 909 - 915
  • [29] Orientational Clustering Learning for Open-Set Hyperspectral Image Classification
    Xu, Hao
    Chen, Wenjing
    Tan, Cheng
    Ning, Hailong
    Sun, Hao
    Xie, Wei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [30] Learning cost function for graph classification with open-set methods
    Werneck, Rafael de Oliveira
    Raveaux, Romain
    Tabbone, Salvatore
    Torres, Ricardo da Silva
    PATTERN RECOGNITION LETTERS, 2019, 128 : 8 - 15