High-Pressure Total Internal Reflection Fluorescence Apparatus

被引:2
|
作者
Dabney, Michael J. [1 ]
Bright, Frank V. [1 ]
机构
[1] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA
关键词
High pressure; Total internal reflection fluorescence; Picosecond; Interfacial dynamics; Interfacial microviscosities; Supercritical carbon dioxide; ACRIDINE-ORANGE; REORIENTATION; DYNAMICS; WATER; MONOLAYER; SPECTROSCOPY; BODIPY;
D O I
10.1366/11-06399
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Important interfacial processes in disciplines ranging from medicine to the separations sciences occur over a wide range of pressures, temperatures, and time scales. In this paper we report a new high-pressure total internal reflection fluorescence (HP-TIRF) apparatus that allows rapid fluorescence measurements of sub-monolayers in contact with liquids and supercritical fluids between 293 K and 353 K and up to 250 bar with picosecond time resolution. We use the HP-TIRF system to study the in-plane rotational reorientation dynamics of the fluorescent probe BODIPY 494/503 (C-2v, symmetry) covalently attached to silica surfaces that have been silanized with n-propyltrimethoxysilane (C-3-TMOS) or 3,3,3-trifluoropropyltrimethoxysilane (CF3-TMOS) when the interface is subjected to pure supercritical carbon dioxide (scCO(2)). The in-plane BODIPY 494/503 rotational reorientation dynamics are assessed by using the Debye-Stokes-Einstein expression. As the scCO(2) density increases the local microviscosity surrounding the tethered BODIPY 494/503 molecule decreases. The terminal group (CH3 versus CF3) within the silane monolayer governs the onset and absolute magnitude of the observed viscosity changes. The results are explained in terms of the well-known solubility of fluorine-containing species in scCO(2).
引用
收藏
页码:1233 / 1239
页数:7
相关论文
共 50 条
  • [31] ELECTRICAL LEAD FOR HIGH-PRESSURE APPARATUS
    SIMON, I
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1957, 28 (11): : 963 - 964
  • [32] TECHNICAL HIGH-PRESSURE POLYETHYLENE APPARATUS
    LUFT, G
    CHEMIE INGENIEUR TECHNIK, 1968, 40 (13) : 663 - &
  • [33] Construction and alignment of a total internal reflection fluorescence microscope
    Griffith, Kaitlyn
    Fogarty, Keir
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [34] Immunosensor based on total internal reflection fluorescence principle
    Lu, Bin
    Wei, Yu
    Zhongguo shengwu yixue gongcheng xuebao, 1993, 12 (02): : 142 - 148
  • [35] APPLICATIONS OF TOTAL INTERNAL-REFLECTION FLUORESCENCE MICROSCOPY
    AXELROD, D
    STOUT, AL
    MCKIERNAN, AE
    WANG, MD
    BIOPHYSICAL JOURNAL, 1994, 66 (02) : A251 - A251
  • [36] Total internal reflection fluorescence: Applications in cellular biophysics
    Thompson, NL
    Lagerholm, BC
    CURRENT OPINION IN BIOTECHNOLOGY, 1997, 8 (01) : 58 - 64
  • [37] Total Internal Reflection Fluorescence Quantification of Receptor Pharmacology
    Fang, Ye
    BIOSENSORS-BASEL, 2015, 5 (02): : 223 - 240
  • [38] Total internal reflection fluorescence microscopy in cell biology
    Axelrod, D
    BIOPHOTONICS, PT B, 2003, 361 : 1 - 33
  • [39] Total internal reflection fluorescence microscopy in cell biology
    Axelrod, D
    TRAFFIC, 2001, 2 (11) : 764 - 774
  • [40] Sensitivity enhancement of transducers for total internal reflection fluorescence
    Klotz, A
    Barzen, C
    Brecht, A
    Harris, RD
    Quigley, GR
    Wilkinson, JS
    Gauglitz, G
    INTEGRATED OPTICS DEVICES III, 1999, 3620 : 345 - 354