A dynamic model for traffic network flow

被引:17
|
作者
Tang, T. Q. [1 ,2 ]
Huang, H. J. [2 ]
Mei, C. Q. [2 ,3 ]
Zhao, S. G. [4 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Dept Automobile Engn, Beijing 100083, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, Sch Management, Beijing 100083, Peoples R China
[3] Capital Univ Econ & Business, Sch Stat, Beijing 100070, Peoples R China
[4] Beijing Univ Aeronaut & Astronaut, Sch Mech Ctr Beijing, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
dynamic model; network traffic flow; inflow; outflow;
D O I
10.1016/j.physa.2008.01.020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Concerning the link properties in traffic networks, we introduce a dynamic equation of road flow into each link, and thereby propose a dynamic model for network flow. Using this model, we investigate the evolutions of inflow, outflow and flow on each link caused by a small perturbation of the network inflow under different route choice rules. Numerical results show that the dynamic model can reasonably capture the basic characteristics of network flow. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2603 / 2610
页数:8
相关论文
共 50 条
  • [31] Short-Term Traffic Flow Forecasting of Urban Network Based on Dynamic STARIMA Model
    Min, Xinyu
    Hu, Jianming
    Chen, Qi
    Zhang, Tongshuai
    Zhang, Yi
    [J]. 2009 12TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC 2009), 2009, : 461 - 466
  • [32] DTM-GCN: A traffic flow prediction model based on dynamic graph convolutional network
    Wang, Xinqiang
    Shang, Yihui
    Li, Guoyan
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2024,
  • [33] Dynamic factor model for network traffic state forecast
    Ma, Tao
    Zhou, Zhou
    Antoniou, Constantinos
    [J]. TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2018, 118 : 281 - 317
  • [34] Dynamic prediction of traffic flow by using backpropagation neural network
    Zhu, Z
    Yang, ZS
    [J]. TRAFFIC AND TRANSPORTATION STUDIES, 1998, : 548 - 555
  • [35] A dynamic network loading model for traffic dynamics modeling
    Celikoglu, Hilmi Berk
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2007, 8 (04) : 575 - 583
  • [36] A Dynamic Heterogeneous Graph Convolution Network For Traffic Flow Prediction
    Li, He
    Jin, Duo
    Li, XueJiao
    Qiao, Shaojie
    [J]. COMPUTER JOURNAL, 2024, 67 (01): : 31 - 44
  • [37] Generic Dynamic Graph Convolutional Network for traffic flow forecasting
    Xu, Yi
    Han, Liangzhe
    Zhu, Tongyu
    Sun, Leilei
    Du, Bowen
    Lv, Weifeng
    [J]. INFORMATION FUSION, 2023, 100
  • [38] Dynamic Spatiotemporal Graph Wavelet Network for Traffic Flow Prediction
    Xu, Weijian
    Liu, Jingjin
    Yan, Jingwen
    Yang, Juan
    Liu, Huifen
    Zhou, Teng
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (05): : 8019 - 8029
  • [39] Spatial dynamic graph convolutional network for traffic flow forecasting
    Li, Huaying
    Yang, Shumin
    Song, Youyi
    Luo, Yu
    Li, Junchao
    Zhou, Teng
    [J]. APPLIED INTELLIGENCE, 2023, 53 (12) : 14986 - 14998
  • [40] Spatial dynamic graph convolutional network for traffic flow forecasting
    Huaying Li
    Shumin Yang
    Youyi Song
    Yu Luo
    Junchao Li
    Teng Zhou
    [J]. Applied Intelligence, 2023, 53 : 14986 - 14998