Single-Image Super-Resolution for Remote Sensing Images Using a Deep Generative Adversarial Network With Local and Global Attention Mechanisms

被引:21
|
作者
Li, Yadong [1 ]
Mavromatis, Sebastien [2 ]
Zhang, Feng [1 ]
Du, Zhenhong [1 ]
Sequeira, Jean [2 ]
Wang, Zhongyi [3 ]
Zhao, Xianwei [3 ]
Liu, Renyi [1 ]
机构
[1] Zhejiang Univ, Sch Earth Sci, Zhejiang Prov Lab Geog Informat Syst GIS, Hangzhou 310058, Peoples R China
[2] Aix Marseille Univ, French Natl Ctr Sci Res CNRS, Lab Comp Sci & Syst LIS, F-13001 Marseille, France
[3] Huawei Technol Co Ltd, City Intelligence Cloud & AI, Shenzhen 518129, Peoples R China
关键词
Remote sensing; Feature extraction; Image reconstruction; Spatial resolution; Signal processing algorithms; Biological system modeling; Generative adversarial networks; Convolutional neural networks (CNNs); generative adversarial network (GAN); local and global attention module; remote sensing; single-image super super-resolution (SISR); RECONSTRUCTION;
D O I
10.1109/TGRS.2021.3093043
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Super-resolution (SR) technology is an important way to improve spatial resolution under the condition of sensor hardware limitations. With the development of deep learning (DL), some DL-based SR models have achieved state-of-the-art performance, especially the convolutional neural network (CNN). However, considering that remote sensing images usually contain a variety of ground scenes and objects with different scales, orientations, and spectral characteristics, previous works usually treat important and unnecessary features equally or only apply different weights in the local receptive field, which ignores long-range dependencies; it is still a challenging task to exploit features on different levels and reconstruct images with realistic details. To address these problems, an attention-based generative adversarial network (SRAGAN) is proposed in this article, which applies both local and global attention mechanisms. Specifically, we apply local attention in the SR model to focus on structural components of the earth's surface that require more attention, and global attention is used to capture long-range interdependencies in the channel and spatial dimensions to further refine details. To optimize the adversarial learning process, we also use local and global attentions in the discriminator model to enhance the discriminative ability and apply the gradient penalty in the form of hinge loss and loss function that combines L1 pixel loss, L1 perceptual loss, and relativistic adversarial loss to promote rich details. The experiments show that SRAGAN can achieve performance improvements and reconstruct better details compared with current state-of-the-art SR methods. A series of ablation investigations and model analyses validate the efficiency and effectiveness of our method.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Single-image super-resolution with multilevel residual attention network
    Qin, Ding
    Gu, Xiaodong
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (19): : 15615 - 15628
  • [22] TE-SAGAN: An Improved Generative Adversarial Network for Remote Sensing Super-Resolution Images
    Xu, Yongyang
    Luo, Wei
    Hu, Anna
    Xie, Zhong
    Xie, Xuejing
    Tao, Liufeng
    REMOTE SENSING, 2022, 14 (10)
  • [23] Residual Triplet Attention Network for Single-Image Super-Resolution
    Huang, Feng
    Wang, Zhifeng
    Wu, Jing
    Shen, Ying
    Chen, Liqiong
    ELECTRONICS, 2021, 10 (17)
  • [24] Single-image super-resolution with multilevel residual attention network
    Ding Qin
    Xiaodong Gu
    Neural Computing and Applications, 2020, 32 : 15615 - 15628
  • [25] REMOTE SENSING IMAGE SUPER-RESOLUTION VIA ATTENTIONAL FEATURE AGGREGATION GENERATIVE ADVERSARIAL NETWORK
    Cai, Feng
    Wu, Ke-Yu
    Wang, Feng
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2598 - 2601
  • [26] Pathological image super-resolution using mix-attention generative adversarial network
    Zhineng Chen
    Jing Wang
    Caiyan Jia
    Xiongjun Ye
    International Journal of Machine Learning and Cybernetics, 2024, 15 : 149 - 159
  • [27] Pathological image super-resolution using mix-attention generative adversarial network
    Chen, Zhineng
    Wang, Jing
    Jia, Caiyan
    Ye, Xiongjun
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (01) : 149 - 159
  • [28] Infrared image super-resolution reconstruction by using generative adversarial network with an attention mechanism
    Liu, Qing-Ming
    Jia, Rui-Sheng
    Liu, Yan-Bo
    Sun, Hai-Bin
    Yu, Jian-Zhi
    Sun, Hong-Mei
    APPLIED INTELLIGENCE, 2021, 51 (04) : 2018 - 2030
  • [29] Infrared image super-resolution reconstruction by using generative adversarial network with an attention mechanism
    Qing-Ming Liu
    Rui-Sheng Jia
    Yan-Bo Liu
    Hai-Bin Sun
    Jian-Zhi Yu
    Hong-Mei Sun
    Applied Intelligence, 2021, 51 : 2018 - 2030
  • [30] Image super-resolution reconstruction based on generative adversarial network model with feedback and attention mechanisms
    Wang, Yongqiang
    Li, Xue
    Nan, Fangzhe
    Liu, Feng
    Li, Hua
    Wang, Haitao
    Qian, Yurong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (05) : 6633 - 6652