Two techniques in the area of the star problem in trace monoids

被引:2
|
作者
Kirsten, D [1 ]
Marcinkowski, J
机构
[1] Tech Univ Dresden, Inst Albebra, D-01062 Dresden, Germany
[2] Univ Wroclaw, Inst Comp Sci, PL-51165 Wroclaw, Poland
关键词
trace monoid; recognizable language; star problem; decidability;
D O I
10.1016/S0304-3975(03)00313-X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper deals with decision problems related to the star problem in trace monoids which means to determine whether the iteration of a recognizable trace language is recognizable. Due to a theorem by Richomme (in: I. Privara et al. (Eds.), MFCS'94 Proc., Lecture Notes in Computer Science, vol. 841, Springer, Berlin, 1994, pp. 577-586), we know that the star problem is decidable in trace monoids which do not contain a submonoid of the form {a,c}* x {b,d}*. [cf. Theory Comput. Systems 34(3) (2001) 193-227]. Here, we consider a more general problem: Is it decidable whether for some recognizable trace language R and some recognizable or finite trace language P the intersection R boolean AND P* is recognizable? If P is recognizable, then we show that this problem is decidable iff the underlying trace monoid does not contain a submonoid of the form {a,c}* x b*. In the case of finite languages P, this problem is decidable in {a,c} * x b* but undecidable in {a,c}* x {b,d}*. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:381 / 412
页数:32
相关论文
共 50 条
  • [31] The finite basis problem for Kauffman monoids
    Auinger, K.
    Chen, Yuzhu
    Hu, Xun
    Luo, Yanfeng
    Volkov, M. V.
    ALGEBRA UNIVERSALIS, 2015, 74 (3-4) : 333 - 350
  • [32] COMPLEXITY RESULTS ON THE CONJUGACY PROBLEM FOR MONOIDS
    NARENDRAN, P
    OTTO, F
    THEORETICAL COMPUTER SCIENCE, 1985, 35 (2-3) : 227 - 243
  • [33] THE MEMBERSHIP PROBLEM IN APERIODIC TRANSFORMATION MONOIDS
    BEAUDRY, M
    MCKENZIE, P
    THERIEN, D
    JOURNAL OF THE ACM, 1992, 39 (03) : 599 - 616
  • [34] THE INTERSECTION PROBLEM FOR ALPHABETIC VECTOR MONOIDS
    HARJU, T
    KEESMAAT, NW
    KLEIJN, HCM
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1994, 28 (3-4): : 295 - 301
  • [35] THE FINITE BASIS PROBLEM FOR KISELMAN MONOIDS
    Ashikhmin, D. N.
    Volkov, M. V.
    Zhang, Wen Ting
    DEMONSTRATIO MATHEMATICA, 2015, 48 (04) : 475 - 492
  • [36] The finite basis problem for Kauffman monoids
    K. Auinger
    Yuzhu Chen
    Xun Hu
    Yanfeng Luo
    M. V. Volkov
    Algebra universalis, 2015, 74 : 333 - 350
  • [37] THE WORD PROBLEM FOR NILPOTENT INVERSE MONOIDS
    SILVA, PV
    SEMIGROUP FORUM, 1995, 51 (03) : 285 - 293
  • [38] Identity checking problem for transformation monoids
    Klima, Ondrej
    SEMIGROUP FORUM, 2012, 84 (03) : 487 - 498
  • [39] On the word problem for weakly compressible monoids
    Nyberg-Brodda, Carl-Fredrik
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (11) : 4731 - 4745
  • [40] Identity checking problem for transformation monoids
    Ondřej Klíma
    Semigroup Forum, 2012, 84 : 487 - 498