Modeling of energetic particle transport in optimized stellarators

被引:21
|
作者
Bader, A. [1 ]
Anderson, D. T. [1 ]
Drevlak, M. [2 ]
Faber, B. J. [1 ]
Hegna, C. C. [1 ]
Henneberg, S. [2 ]
Landreman, M. [3 ]
Schmitt, J. C. [4 ]
Suzuki, Y. [5 ]
Ware, A. [6 ]
机构
[1] Univ Wisconsin, Madison, WI 53706 USA
[2] Max Planck Inst Plasma Phys, Greifswald, Germany
[3] Univ Maryland, College Pk, MD 20742 USA
[4] Auburn Univ, Auburn, AL 36849 USA
[5] Hiroshima Univ, Higashihiroshima, Japan
[6] Univ Montana, Missoula, MT 59812 USA
关键词
stellarators; energetic particles; optimization; NEOCLASSICAL TRANSPORT; ION CONFINEMENT; PHYSICS DESIGN; CONFIGURATION;
D O I
10.1088/1741-4326/ac2991
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Nine stellarator configurations, three quasiaxisymmetric, three quasihelically symmetric and three non-quasisymmetric are scaled to ARIES-CS size and analyzed for energetic particle content. The best performing configurations with regard to energetic particle confinement also perform the best on the neoclassical Gamma(c) metric, which attempts to align contours of the second adiabatic invariant with flux surfaces. Quasisymmetric configurations that simultaneously perform well on Gamma(c) and quasisymmetry have the best overall confinement, with collisional losses under 3%, approaching the performance of ITER with ferritic inserts.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] CONFINEMENT AND TRANSPORT IN STELLARATORS
    BETANCOURT, O
    GARABEDIAN, P
    [J]. PHYSICS OF FLUIDS, 1985, 28 (03) : 912 - 919
  • [22] Transport optimization in stellarators
    Mynick, H. E.
    [J]. PHYSICS OF PLASMAS, 2006, 13 (05)
  • [23] Critical issues and comparison of optimized stellarators
    Nuehrenberg, J.
    [J]. FUSION SCIENCE AND TECHNOLOGY, 2006, 50 (02) : 146 - 157
  • [24] DEVELOPMENT OF DIVERTOR CONCEPT FOR OPTIMIZED STELLARATORS
    NUHRENBERG, J
    STRUMBERGER, E
    [J]. CONTRIBUTIONS TO PLASMA PHYSICS, 1992, 32 (3-4) : 204 - 211
  • [25] Energetic particle transport in anisotropic magnetic turbulence
    Pommois, P
    Zimbardo, G
    Veltri, P
    [J]. HELIOSPHERIC COSMIC RAY TRANSPORT, MODULATION AND TURBULENCE, 2005, 35 (04): : 647 - 652
  • [26] ENERGETIC PARTICLE-TRANSPORT COEFFICIENTS IN THE HELIOSPHERE
    VALDESGALICIA, JF
    [J]. SPACE SCIENCE REVIEWS, 1992, 62 (1-2) : 67 - 93
  • [27] Benchmarking of the mono-energetic transport coefficients-results from the International Collaboration on Neoclassical Transport in Stellarators (ICNTS)
    Beidler, C. D.
    Allmaier, K.
    Isaev, M. Yu
    Kasilov, S. V.
    Kernbichler, W.
    Leitold, G. O.
    Maassberg, H.
    Mikkelsen, D. R.
    Murakami, S.
    Schmidt, M.
    Spong, D. A.
    Tribaldos, V.
    Wakasa, A.
    [J]. NUCLEAR FUSION, 2011, 51 (07)
  • [28] Collisionless high energy particle losses in optimized stellarators calculated in real-space coordinates
    Nemov, V. V.
    Kasilov, S. V.
    Kernbichler, W.
    [J]. PHYSICS OF PLASMAS, 2014, 21 (06)
  • [29] Acceleration and transport modeling of solar energetic particle charge states for the event of 1998 September 9
    Droege, W.
    Kartavykh, Y. Y.
    Klecker, B.
    Mason, G. M.
    [J]. ASTROPHYSICAL JOURNAL, 2006, 645 (02): : 1516 - 1524
  • [30] Optimization of quasi-symmetric stellarators with self-consistent bootstrap current and energetic particle confinement
    Landreman, M.
    Buller, S.
    Drevlak, M.
    [J]. PHYSICS OF PLASMAS, 2022, 29 (08)