Low pumping energy mode of the "optical bars"/"optical lever" topologies of gravitational-wave antennae

被引:14
|
作者
Khalili, FY [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 117234, Russia
关键词
D O I
10.1016/S0375-9601(03)01136-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The "optical bars"/"optical lever" topologies of gravitational-wave antennae allow to obtain sensitivity better that the Standard Quantum Limit while keeping the optical pumping energy in the antenna relatively low. Element of the crucial importance in these schemes is the local meter which monitors the local test mirror position. Using cross-correlation of this meter back-action noise and its measurement noise it is possible to further decrease the optical pumping energy. In this case the pumping energy minimal value will be limited by the internal losses in the antenna only. Estimates show that for values of parameters available for contemporary and planned gravitational-wave antennae, sensitivity about one order of magnitude better than the Standard Quantum Limit can be obtained using the pumping energy about one order of magnitude smaller energy than is required in the traditional topology in order to obtain the Standard Quantum Limit level of sensitivity. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:169 / 180
页数:12
相关论文
共 50 条
  • [21] Optical Telescope Design for a Space-based Gravitational-wave Mission
    Sankar, Shannon R.
    Livas, Jeffrey C.
    SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE, 2014, 9143
  • [22] Power spectral density analysis of optical substrates for gravitational-wave interferometry
    Walsh, CJ
    Leistner, AJ
    Oreb, BF
    APPLIED OPTICS, 1999, 38 (22) : 4790 - 4801
  • [23] Sensitivity limitations in optical speed meter topology of gravitational-wave antennas
    Danilishin, SL
    PHYSICAL REVIEW D, 2004, 69 (10):
  • [24] A SEARCH FOR AN OPTICAL COUNTERPART TO THE GRAVITATIONAL-WAVE EVENT GW151226
    Smartt, S. J.
    Chambers, K. C.
    Smith, K. W.
    Huber, M. E.
    Young, D. R.
    Chen, T. -W.
    Inserra, C.
    Wright, D. E.
    Coughlin, M.
    Denneau, L.
    Flewelling, H.
    Heinze, A.
    Jerkstrand, A.
    Magnier, E. A.
    Maguire, K.
    Mueller, B.
    Rest, A.
    Sherstyuk, A.
    Stalder, B.
    Schultz, A. S. B.
    Stubbs, C. W.
    Tonry, J.
    Waters, C.
    Wainscoat, R. J.
    Della Valle, M.
    Dennefeld, M.
    Dimitriadis, G.
    Firth, R. E.
    Fraser, M.
    Frohmaier, C.
    Gal-Yam, A.
    Harmanen, J.
    Kankare, E.
    Kotak, R.
    Kromer, M.
    Mandel, I.
    Sollerman, J.
    Gibson, B.
    Primak, N.
    Willman, M.
    ASTROPHYSICAL JOURNAL LETTERS, 2016, 827 (02)
  • [25] Negative optical inertia for enhancing the sensitivity of future gravitational-wave detectors
    Khalili, Farid
    Danilishin, Stefan
    Mueller-Ebhardt, Helge
    Miao, Haixing
    Chen, Yanbei
    Zhao, Chunnong
    PHYSICAL REVIEW D, 2011, 83 (06):
  • [26] HEATING BY OPTICAL-ABSORPTION AND THE PERFORMANCE OF INTERFEROMETRIC GRAVITATIONAL-WAVE DETECTORS
    WINKLER, W
    DANZMANN, K
    RUDIGER, A
    SCHILLING, R
    PHYSICAL REVIEW A, 1991, 44 (11): : 7022 - 7036
  • [27] OPTIMIZATION OF LONG-BASELINE OPTICAL INTERFEROMETERS FOR GRAVITATIONAL-WAVE DETECTION
    VINET, JY
    MEERS, B
    MAN, CN
    BRILLET, A
    PHYSICAL REVIEW D, 1988, 38 (02): : 433 - 447
  • [28] OPTICAL MOTION SENSOR FOR RESONANT-BAR GRAVITATIONAL-WAVE ANTENNAS
    RICHARD, JP
    PANG, Y
    HAMILTON, JJ
    APPLIED OPTICS, 1992, 31 (10): : 1641 - 1645
  • [29] Progress in the measurement and reduction of thermal noise in optical coatings for gravitational-wave detectors
    Granata, M.
    Amato, A.
    Cagnoli, G.
    Coulon, M.
    Degallaix, J.
    Forest, D.
    Mereni, L.
    Michel, C.
    Pinard, L.
    Sassolas, B.
    Teillon, J.
    APPLIED OPTICS, 2020, 59 (05) : A229 - A235
  • [30] Quantum Limit for Laser Interferometric Gravitational-Wave Detectors from Optical Dissipation
    Miao, Haixing
    Smith, Nicolas D.
    Evans, Matthew
    PHYSICAL REVIEW X, 2019, 9 (01)