Enhancement of Small-scale Turbulent Dynamo by Large-scale Shear

被引:10
|
作者
Singh, Nishant K. [1 ,2 ,3 ]
Rogachevskii, Igor [2 ,3 ,4 ]
Brandenburg, Axel [2 ,3 ,5 ,6 ,7 ,8 ]
机构
[1] Max Planck Inst Sonnensyst Forsch, Justus von Liebig Weg 3, D-37077 Gottingen, Germany
[2] KTH Royal Inst Technol, NORDITA, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden
[3] Stockholm Univ, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden
[4] Ben Gurion Univ Negev, Dept Mech Engn, POB 653, IL-84105 Beer Sheva, Israel
[5] Univ Colorado, JILA, Boulder, CO 80303 USA
[6] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80303 USA
[7] Stockholm Univ, AlbaNova Univ Ctr, Dept Astron, SE-10691 Stockholm, Sweden
[8] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA
基金
瑞典研究理事会; 美国国家科学基金会;
关键词
dynamo; magnetic fields; magnetohydrodynamics (MHD); turbulence; MAGNETIC-FIELDS; FLUCTUATIONS; NUMBERS; FLOW;
D O I
10.3847/2041-8213/aa96a1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Small-scale dynamos (SSDs) are ubiquitous in a broad range of turbulent flows with large-scale shear, ranging from solar and galactic magnetism to accretion disks, cosmology, and structure formation. Using high-resolution direct numerical simulations, we show that in non-helically forced turbulence with zero mean magnetic field, large-scale shear supports SSD action, i.e., the dynamo growth rate increases with shear and shear enhances or even produces turbulence, which, in turn, further increases the growth rate. When the production rates of turbulent kinetic energy due to shear and forcing are comparable, we find scalings for the growth rate gamma of the SSD and the turbulent rms velocity u(rms) with shear rate S that are independent of the magnetic Prandtl number: gamma proportional to vertical bar S vertical bar and u(rms) proportional to vertical bar S vertical bar(2/3). For large fluid and magnetic Reynolds numbers, gamma, normalized by its shear-free value, depends only on shear. Having compensated for shear-induced effects on turbulent velocity, we find that the normalized growth rate of the SSD exhibits the scaling, (gamma) over tilde proportional to vertical bar S vertical bar(2/3), arising solely from the induction equation for a given velocity field.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers
    Mathis, Romain
    Hutchins, Nicholas
    Marusic, Ivan
    JOURNAL OF FLUID MECHANICS, 2009, 628 : 311 - 337
  • [22] Transition from Small-scale to Large-scale Dynamo in a Supernova-driven, Multiphase Medium
    Gent, Frederick A.
    Mac Low, Mordecai-Mark
    Korpi-Lagg, Maarit J.
    ASTROPHYSICAL JOURNAL, 2024, 961 (01):
  • [23] Small-scale dynamics of large-scale processes
    Scott, RJ
    AMERICAN HISTORICAL REVIEW, 2000, 105 (02): : 472 - 479
  • [24] Large-scale and small-scale farming.
    Carver, TN
    PUBLICATIONS OF THE AMERICAN STATISTICAL ASSOCIATION, 1911, 12 : 488 - 489
  • [25] Large-scale and small-scale farming.
    Carver, T. N.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1911, 12 (93) : 488 - 489
  • [26] Large-scale cooperation in small-scale societies
    Boyd, Robert
    Richerson, Peter J.
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, 2020, 171 : 33 - 33
  • [27] LARGE-SCALE AND SMALL-SCALE PHENOL EXTRACTIONS
    WALLACE, DM
    METHODS IN ENZYMOLOGY, 1987, 152 : 33 - 41
  • [28] THE EFFECTS OF LARGE-SCALE MOTION ON THE REGENERATION OF TURBULENT DYNAMO
    CARVALHO, JC
    ASTROPHYSICS AND SPACE SCIENCE, 1990, 168 (02) : 183 - 191
  • [29] Detection of small-scale/large-scale interactions in turbulent wall-bounded flows
    Maeteling, Esther
    Klaas, Michael
    Schroeder, Wolfgang
    PHYSICAL REVIEW FLUIDS, 2020, 5 (11):
  • [30] Effects of large-scale advection and small-scale turbulent diffusion on vertical phytoplankton dynamics
    Tergolina, Vinicius Beltram
    Calzavarini, Enrico
    Mompean, Gilmar
    Berti, Stefano
    PHYSICAL REVIEW E, 2021, 104 (06)