Fast and Efficient Method for Optical Coherence Tomography Images Classification Using Deep Learning Approach

被引:10
|
作者
Ara, Rouhollah Kian [1 ]
Matiolanski, Andrzej [1 ]
Dziech, Andrzej [1 ]
Baran, Remigiusz [2 ]
Domin, Pawel [3 ]
Wieczorkiewicz, Adam [3 ]
机构
[1] AGH Univ Sci & Technol, Inst Telecommun, PL-30059 Krakow, Poland
[2] Kielce Univ Technol, Fac Elect Engn Automat Control & Comp Sci, PL-25314 Kielce, Poland
[3] Consultronix SA, PL-32083 Balice, Poland
关键词
artificial neural networks; biomedical imaging; image analysis; optical coherence tomography; oct; convolutional neural network; DISEASES;
D O I
10.3390/s22134675
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The use of optical coherence tomography (OCT) in medical diagnostics is now common. The growing amount of data leads us to propose an automated support system for medical staff. The key part of the system is a classification algorithm developed with modern machine learning techniques. The main contribution is to present a new approach for the classification of eye diseases using the convolutional neural network model. The research concerns the classification of patients on the basis of OCT B-scans into one of four categories: Diabetic Macular Edema (DME), Choroidal Neovascularization (CNV), Drusen, and Normal. Those categories are available in a publicly available dataset of above 84,000 images utilized for the research. After several tested architectures, our 5-layer neural network gives us a promising result. We compared them to the other available solutions which proves the high quality of our algorithm. Equally important for the application of the algorithm is the computational time, which is reduced by the limited size of the model. In addition, the article presents a detailed method of image data augmentation and its impact on the classification results. The results of the experiments were also presented for several derived models of convolutional network architectures that were tested during the research. Improving processes in medical treatment is important. The algorithm cannot replace a doctor but, for example, can be a valuable tool for speeding up the process of diagnosis during screening tests.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] A deep learning approach to predict visual field using optical coherence tomography
    Park, Keunheung
    Kim, Jinmi
    Lee, Jiwoong
    PLOS ONE, 2020, 15 (07):
  • [32] Optical Coherence Tomography Analysis Using Deep Learning: A Synthetic Data Approach
    Virdi, Gurpal
    Virdi, Tejpal
    Elkeeb, Ahmed
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2021, 62 (11)
  • [33] A deep learning approach to classify atherosclerosis using intracoronary optical coherence tomography
    Athanasiou, Lambros S.
    Olender, Max L.
    de la Torre Hernandez, Jose M.
    Ben-Assa, Eyal
    Edelman, Elazer R.
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [34] Classification of optical coherence tomography images using a capsule network
    Takumasa Tsuji
    Yuta Hirose
    Kohei Fujimori
    Takuya Hirose
    Asuka Oyama
    Yusuke Saikawa
    Tatsuya Mimura
    Kenshiro Shiraishi
    Takenori Kobayashi
    Atsushi Mizota
    Jun’ichi Kotoku
    BMC Ophthalmology, 20
  • [35] Classification of optical coherence tomography images using a capsule network
    Tsuji, Takumasa
    Hirose, Yuta
    Fujimori, Kohei
    Hirose, Takuya
    Oyama, Asuka
    Saikawa, Yusuke
    Mimura, Tatsuya
    Shiraishi, Kenshiro
    Kobayashi, Takenori
    Mizota, Atsushi
    Kotoku, Jun'ichi
    BMC OPHTHALMOLOGY, 2020, 20 (01)
  • [36] A Deep Learning Approach to Digitally Stain Optical Coherence Tomography Images of the Optic Nerve Head
    Devalla, Sripad Krishna
    Chin, Khai Sing
    Mari, Jean-Martial
    Tun, Tin A.
    Strouthidis, Nicholas G.
    Aung, Tin
    Thiery, Alexandre H.
    Girard, Michael J. A.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (01) : 63 - 74
  • [37] A fast normalization and despeckled method for skin optical coherence tomography image via deep learning
    Rahaman, Jarjish
    Lukas, Brandon
    May, Julia
    Puyana, Carolina
    Tsoukas, Maria
    Avanaki, Kamran
    PHOTONICS IN DERMATOLOGY AND PLASTIC SURGERY 2023, 2023, 12352
  • [38] Deep learning for quality assessment of optical coherence tomography angiography images
    Wang, Jay C.
    Dhodapkar, Rahul
    Li, Emily
    Nwanyanwu, Kristen Harris
    Adelman, Ron A.
    Krishnaswamy, Smita
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [39] Deep learning for quality assessment of optical coherence tomography angiography images
    Dhodapkar, Rahul M.
    Li, Emily
    Nwanyanwu, Kristen
    Adelman, Ron
    Krishnaswamy, Smita
    Wang, Jay C.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [40] Facilitating deep learning through preprocessing of optical coherence tomography images
    Li, Anfei
    Winebrake, James P.
    Kovacs, Kyle
    BMC OPHTHALMOLOGY, 2023, 23 (01)