MIDAW: a web tool for statistical analysis of microarray data

被引:44
|
作者
Romualdi, C [1 ]
Vitulo, N [1 ]
Favero, MD [1 ]
Lanfranchi, G [1 ]
机构
[1] Univ Padua, Dipartimento Biol, CRIBI Biotechnol Ctr, I-35121 Padua, Italy
关键词
D O I
10.1093/nar/gki497
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MIDAW (microarray data analysis web tool) is a web interface integrating a series of statistical algorithms that can be used for processing and interpretation of microarray data. MIDAW consists of two main sections: data normalization and data analysis. In the normalization phase the simultaneous processing of several experiments with background correction, global and local mean and variance normalization are carried out. The data analysis section allows graphical display of expression data for descriptive purposes, estimation of missing values, reduction of data dimension, discriminant analysis and identification of marker genes. The statistical results are organized in dynamic web pages and tables, where the transcript/ gene probes contained in a specific microarray platform can be linked ( according to user choice) to external databases (GenBank, Entrez Gene, UniGene). Tutorial files help the user throughout the statistical analysis to ensure that the forms are filled out correctly. MIDAW has been developed using Perl and PHP and it uses R/Bioconductor languages and routines. MIDAW is GPL licensed and freely accessible at http://muscle.cribi. unipd.it/midaw/.Perl and PHP source codes are available from the authors upon request.
引用
收藏
页码:W644 / W649
页数:6
相关论文
共 50 条
  • [31] mDAG: a web-based tool for analyzing microarray data with multiple treatments
    Phan, Vinhthuy T.
    Vo, Nam S.
    Sutter, Thomas R.
    BMC BIOINFORMATICS, 2011, 12
  • [32] Statistical methods and microarray data
    Lev Klebanov
    Xing Qiu
    Stephen Welle
    Andrei Yakovlev
    Nature Biotechnology, 2007, 25 : 25 - 26
  • [33] Statistical methods and microarray data
    Klebanov, Lev
    Qiu, Xing
    Welle, Stephen
    Yakovlev, Andrei
    NATURE BIOTECHNOLOGY, 2007, 25 (01) : 24 - 25
  • [34] A conditional density error model for the statistical analysis of microarray data
    Love, B
    Rank, DR
    Penn, SG
    Thomas, RS
    BIOINFORMATICS, 2002, 18 (08) : 1064 - 1072
  • [35] An evaluation of statistical methods for DNA methylation microarray data analysis
    Dongmei Li
    Zidian Xie
    Marc Le Pape
    Timothy Dye
    BMC Bioinformatics, 16 (1)
  • [36] A STATISTICAL FRAMEWORK FOR THE ANALYSIS OF MICROARRAY PROBE-LEVEL DATA
    Wu, Zhijin
    Irizarry, Rafael A.
    ANNALS OF APPLIED STATISTICS, 2007, 1 (02): : 333 - 357
  • [37] Inferring the statistical gene contribution in multivariate analysis of microarray data
    Baty, F.
    Schumacher, M.
    Brutsche, M.
    SWISS MEDICAL WEEKLY, 2007, 137 : 5S - 5S
  • [38] A statistical framework for differential network analysis from microarray data
    Gill, Ryan
    Datta, Somnath
    Datta, Susmita
    BMC BIOINFORMATICS, 2010, 11
  • [39] GeneXplorer: an interactive web application for microarray data visualization and analysis
    Christian A Rees
    Janos Demeter
    John C Matese
    David Botstein
    Gavin Sherlock
    BMC Bioinformatics, 5
  • [40] GeneXplorer: an interactive web application for microarray data visualization and analysis
    Rees, CA
    Demeter, J
    Matese, JC
    Botstein, D
    Sherlock, G
    BMC BIOINFORMATICS, 2004, 5 (1)