The pressure of Ricci curvature

被引:1
|
作者
Paternain, GP [1 ]
Petean, J
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
[2] CIMAT, Guanajuato 36000, Mexico
关键词
topological pressure; Ricci curvature; entropy rigidity;
D O I
10.1023/A:1025842932050
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M-n; g) be a closed Riemannian manifold and let k(0) be any positive upper bound for the sectional curvature. We prove that P(r(g)/2rootk(0)) less than or equal to n-1/2 rootk(0), where P(f) stands for the topological pressure of a function f on the unit sphere bundle SM and r(g)(v) is the Ricci curvature in the direction of v is an element of SM. This result gives rise to several estimates for the various entropies of the geodesic flow which in turn have several consequences. One of them is entropy rigidity for those metrics in a hyperbolic manifold whose normalized total scalar curvature is bigger than that of the hyperbolic metric.
引用
收藏
页码:93 / 102
页数:10
相关论文
共 50 条
  • [1] The Pressure of Ricci Curvature
    Gabriel P. Paternain
    Jimmy Petean
    Geometriae Dedicata, 2003, 100 : 93 - 102
  • [2] BOUNDED RICCI CURVATURE AND POSITIVE SCALAR CURVATURE UNDER RICCI FLOW
    Kroncke, Klaus
    Marxen, Tobias
    Vertman, Boris
    PACIFIC JOURNAL OF MATHEMATICS, 2023, 324 (02) : 295 - 331
  • [3] INEQUALITIES ON THE RICCI CURVATURE
    Mihai, Adela
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (03): : 811 - 822
  • [4] Ricci curvature and orientability
    Shouhei Honda
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [5] The Geometry of Ricci Curvature
    Naber, Aaron
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL II, 2014, : 911 - 937
  • [6] RICCI CURVATURE OF GRAPHS
    Lin, Yong
    Lu, Linyuan
    Yau, Shing-Tung
    TOHOKU MATHEMATICAL JOURNAL, 2011, 63 (04) : 605 - 627
  • [7] Ricci curvature and measures
    Jean-Pierre Bourguignon
    Japanese Journal of Mathematics, 2009, 4 : 27 - 45
  • [8] On the projective Ricci curvature
    Shen Z.
    Sun L.
    Science China Mathematics, 2021, 64 (7) : 1629 - 1636
  • [9] CONVEXITY AND RICCI CURVATURE
    BROCKS, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (01): : 73 - 75
  • [10] Ricci curvature and orientability
    Honda, Shouhei
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (06)