On the projective Ricci curvature

被引:0
|
作者
Shen Z. [1 ]
Sun L. [2 ,3 ]
机构
[1] Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, 46202, IN
[2] Department of Mathematics, Taiyuan University of Technology, Taiyuan
[3] School of Science, Jimei University, Xiamen
关键词
53B40; 53C60; Finsler metric; projective Ricci curvature; Randers metric; spray;
D O I
10.1007/s11425-020-1705-x
中图分类号
学科分类号
摘要
The notion of the Ricci curvature is defined for sprays on a manifold. With a volume form on a manifold, every spray can be deformed to a projective spray. The Ricci curvature of a projective spray is called the projective Ricci curvature. In this paper, we introduce the notion of projectively Ricci-flat sprays. We establish a global rigidity result for projectively Ricci-flat sprays with nonnegative Ricci curvature. Then we study and characterize projectively Ricci-flat Randers metrics. © 2020, Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature.
引用
收藏
页码:1629 / 1636
页数:7
相关论文
共 50 条
  • [1] On the projective Ricci curvature
    Zhongmin Shen
    Liling Sun
    [J]. Science China Mathematics, 2021, 64 (07) : 1629 - 1636
  • [2] ON PROJECTIVE RICCI CURVATURE OF MATSUMOTO METRICS
    Gabrani, M.
    Rezaei, B.
    Tayebi, A.
    [J]. ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2021, 90 (01): : 111 - 126
  • [3] A Comparison Theorem on the Ricci Curvature in Projective Geometry
    Xinyue Chen
    Zhongmin Shen
    [J]. Annals of Global Analysis and Geometry, 2003, 23 : 141 - 155
  • [4] On a class of projective Ricci curvature of Finsler metrics
    Zhu, Hongmei
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (11)
  • [5] WEIGHTED PROJECTIVE RICCI CURVATURE IN FINSLER GEOMETRY
    Tabatabaeifar, Tayebeh
    Najafi, Behzad
    Tayebi, Akbar
    [J]. MATHEMATICA SLOVACA, 2021, 71 (01) : 183 - 198
  • [6] A comparison theorem on the Ricci curvature in projective geometry
    Chen, XY
    Shen, ZM
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2003, 23 (02) : 141 - 155
  • [7] On isotropic projective Ricci curvature of C-reducible Finsler metrics
    Ghasemnezhad, Laya
    Rezaei, Bahman
    Gabrani, Mehran
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (03) : 1730 - 1741
  • [8] On the projective Ricci curvature In Memory of Professor Zhengguo Bai(1916-2015)
    Shen, Zhongmin
    Sun, Liling
    [J]. SCIENCE CHINA-MATHEMATICS, 2021, 64 (07) : 1629 - 1636
  • [9] Compact Minimal C R Submanifolds of a Complex Projective Space with Positive Ricci Curvature
    Kon, Mayuko
    [J]. TOKYO JOURNAL OF MATHEMATICS, 2010, 33 (02) : 415 - 434
  • [10] BOUNDED RICCI CURVATURE AND POSITIVE SCALAR CURVATURE UNDER RICCI FLOW
    Kroncke, Klaus
    Marxen, Tobias
    Vertman, Boris
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2023, 324 (02) : 295 - 331