Carbon-Based Nanostructures Obtained in Water by Ultrashort Laser Pulses

被引:33
|
作者
Santagata, A. [1 ]
De Bonis, A. [1 ,2 ]
De Giacomo, A. [3 ,4 ]
Dell'Aglio, M. [4 ]
Laurita, A. [2 ]
Senesi, G. S. [4 ]
Gaudiuso, R. [3 ]
Orlando, S. [1 ]
Teghil, R. [1 ,2 ]
Parisi, G. P. [1 ]
机构
[1] UOS Potenza, IMIP CNR, I-85050 Tito, PZ, Italy
[2] Univ Basilicata, Dept Chem AM Tamburro, I-85100 Potenza, Italy
[3] Univ Bari A Moro, Dept Chem, I-70126 Bari, Italy
[4] UOS Bari, IMIP CNR, I-70126 Bari, Italy
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2011年 / 115卷 / 12期
关键词
ENHANCED RAMAN-SCATTERING; CHEMICAL-VAPOR-DEPOSITION; SOLID INTERFACIAL REACTION; DIAMOND NANOCRYSTALS; NANODIAMOND PARTICLES; AMORPHOUS-CARBON; ABLATION; LIQUID; NANOPARTICLES; OXYGEN;
D O I
10.1021/jp1094239
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An ultrashort (100 fs) Ti:Sapphire pulsed laser has been employed in order to produce nanostructures by pulsed ablation of a graphite target in water. Different (10-100-1000 Hz) repetition rates have been used, and the features of material produced have been investigated by surface enhanced Raman spectroscopy (SEAS) and scanning electron microscopy (SEM). SERS spectra show that a broad asymmetric band associated with diamond-like carbon (DLC) is observed when repetition rates of 10 or 100 Hz are used. On the contrary, ablated species produced with 1 kHz pulses present a narrow peak at 1333 cm(-1), the typical mode of diamond, which is, however, embedded in a DLC band centered at 1540 cm(-1). SEM images show the presence of dispersed octahedral-shaped structures having a size from 1 to 5 mu m, in the case of 10 or 100 Hz repetition rates, and agglomerates of particles having a dimension below 300 nm, when 1 kHz pulses are used.
引用
收藏
页码:5160 / 5164
页数:5
相关论文
共 50 条
  • [21] Laser Directed Growth of Carbon-Based Nanostructures by Plasmon Resonant Chemical Vapor Deposition
    Hung, Wei Hsuan
    Hsu, I-Kai
    Bushmaker, Adam
    Kumar, Rajay
    Theiss, Jesse
    Cronin, Stephen B.
    NANO LETTERS, 2008, 8 (10) : 3278 - 3282
  • [22] THEORY OF ULTRASHORT LASER PULSES
    HAKEN, H
    OHNO, H
    OPTICS COMMUNICATIONS, 1976, 16 (02) : 205 - 208
  • [23] Micromachining with ultrashort laser pulses
    Zhao, JX
    Hüttner, B
    Menschig, A
    LASER APPLICATIONS IN MICROELECTRONIC AND OPTOELECTRONIC MANUFACTURING IV, 1999, 3618 : 114 - 121
  • [24] ULTRASHORT LASER PULSES AND THEIR USES
    MAGYAR, G
    NATURE, 1968, 218 (5136) : 16 - &
  • [25] Microablation with ultrashort laser pulses
    Zhao, JX
    Huettner, B
    Menschig, A
    OPTICS AND LASER TECHNOLOGY, 2001, 33 (07): : 487 - 491
  • [26] The Measurement of Ultrashort Laser Pulses
    Trebino, Rick
    Guang, Zhe
    Zhu, Ping
    Rhodes, Michelle
    2018 2ND URSI ATLANTIC RADIO SCIENCE MEETING (AT-RASC), 2018,
  • [27] Vortices in ultrashort laser pulses
    Hansinger, P.
    Dreischuh, A.
    Paulus, G. G.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 104 (03): : 561 - 567
  • [28] Microtooling by ultrashort laser pulses
    Baubeau, E
    Le Harzic, R
    Audouard, E
    Jonin, C
    Courbon, M
    Mottin, S
    Laporte, P
    JOURNAL DE PHYSIQUE IV, 2001, 11 (PR7): : 93 - 94
  • [29] Formation of antifriction surface-pereiodic nanostructures under the action of ultrashort laser pulses
    Voznesenskaya, A.
    Kochuev, D.
    Zhdanov, A.
    Khorkov, K.
    Morozov, V
    VII INTERNATIONAL CONFERENCE MODERN NANOTECHNOLOGIES AND NANOPHOTONICS FOR SCIENCE AND INDUSTRY, 2019, 1164
  • [30] Laser ablation of iron by ultrashort laser pulses
    Nedialkov, NN
    Imamova, SE
    Atanasov, PA
    Heusel, G
    Breitling, D
    Ruf, A
    Hügel, H
    Dausinger, F
    Berger, P
    THIN SOLID FILMS, 2004, 453 : 496 - 500