Target tracking and engagement for inertial fusion energy - A tabletop demonstration

被引:11
|
作者
Carlson, Lane [1 ]
Tillack, Mark
Lorentz, Thomas
Spalding, Jon
Alexander, Neil
Flint, Graham
Goodin, Dan
Petzolde, Ronald
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
[2] Gen Atom Co, San Diego, CA USA
关键词
D O I
10.13182/FST07-A1534
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
In the High Average Power Laser program, we have developed an integrated target tracking and engagement system designed to track an inertial fusion energy target traveling 50-100 m/s in three dimensions and to steer driver beams so as to engage it with +/- 20 pm accuracy. The system consists of separate axial and transverse detection techniques to pre-steer individual beamlet mirrors, and a final fine-correction technique using a short-pulse laser "glint" from the target itself. Transverse tracking of the target uses the Poisson spot diffraction phenomenon, which lies exactly on axis to the centroid of the target. The spot is imaged on a digital video camera and its centroid is calculated in similar to 10 ms with 5 Mm precision. In our tabletop demonstration, we have been able to continuously track a target falling at 5 m/s and provide a fast steering mirror with steering commands. We are on the verge of intercepting the target on-the-fly and of verifying the accuracy of engagement. Future work entails combining transverse tracking, axial tracking, triggering and the final "glint" system. We also will implement a verification technique that confirms successful target engagement with a simulated driver beam. Results and integration progress are reported.
引用
收藏
页码:478 / 482
页数:5
相关论文
共 50 条
  • [1] Completing the Viability Demonstration of Direct-Drive Inertial Fusion Energy Target Engagement
    Carlson, L. C.
    Tillack, M. S.
    Stromsoe, J.
    Alexander, N. B.
    Flint, G. W.
    Goodin, D. T.
    Petzoldt, R. W.
    2009 23RD IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, 2009, : 631 - +
  • [2] Target injection and tracking for inertial fusion energy
    Petzoldt, Ronald W.
    Moir, Ralph W.
    Fusion Engineering and Design, 1996, 32-33 : 113 - 121
  • [3] Target injection and tracking for inertial fusion energy
    Petzoldt, RW
    Moir, RW
    FUSION ENGINEERING AND DESIGN, 1996, 32-33 : 113 - 121
  • [4] Status of target injection and tracking studies for inertial fusion energy
    Petzoldt, RW
    Goodin, D
    Siegel, N
    FUSION TECHNOLOGY, 2000, 38 (01): : 22 - 27
  • [5] Design of an inertial fusion energy target tracking and position prediction system
    Petzoldt, RW
    Cherry, M
    Alexander, NB
    Goodin, DT
    Besenbruch, GE
    Schultz, KR
    FUSION TECHNOLOGY, 2001, 39 (02): : 678 - 683
  • [6] Developing target injection and tracking for inertial fusion energy power plants
    Goodin, DT
    Alexander, NB
    Gibson, CR
    Nobile, A
    Petzoldt, RW
    Siegel, NP
    Thompson, L
    NUCLEAR FUSION, 2001, 41 (05) : 527 - 535
  • [7] Developing the basis for target injection and tracking in Inertial Fusion Energy power plants
    Goodin, DT
    Gibson, CR
    Petzoldt, RW
    Siegel, NP
    Thompson, L
    Nobile, A
    Besenbruch, GE
    Schultz, KR
    FUSION ENGINEERING AND DESIGN, 2002, 60 (01) : 27 - 36
  • [8] Target production for inertial fusion energy
    Woodworth, JG
    Meier, WR
    FUSION TECHNOLOGY, 1997, 31 (03): : 280 - 290
  • [9] Target physics for inertial fusion energy
    MartinezVal, JM
    Velarde, G
    Eliezer, S
    CURRENT TRENDS IN INTERNATIONAL FUSION RESEARCH, 1997, : 43 - 65
  • [10] Demonstrating a target supply for inertial fusion energy
    Goodin, DT
    Alexander, NB
    Brown, LC
    Callahan, DA
    Ebey, PS
    Frey, DT
    Gallix, R
    Geller, DA
    Gibson, CR
    Hoffer, JK
    Maxwell, JL
    McQuillan, BW
    Nikroo, A
    Nobile, A
    Olson, C
    Petzoldt, RW
    Raffray, R
    Rickman, WS
    Rochau, G
    Schroen, DG
    Sethian, J
    Sheliak, JD
    Streit, JE
    Tillack, M
    Vermillion, BA
    Valmianski, EI
    FUSION SCIENCE AND TECHNOLOGY, 2005, 47 (04) : 1131 - 1138