Target production for inertial fusion energy

被引:5
|
作者
Woodworth, JG
Meier, WR
机构
[1] Lawrence Livermore Natl. Laboratory, Livermore, CA 94551-9900
[2] Evaluation and Planning Program, Nonproliferation, Arms Contr., I.
[3] University of California, Berkeley, CA
[4] Inertial Confinement Fusion A., Laser Program
来源
FUSION TECHNOLOGY | 1997年 / 31卷 / 03期
关键词
D O I
10.13182/FST97-A30831
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Inertial fusion energy (IFE) power plants will require the ignition and burn of five to ten fusion fuel targets every second. The technology to economically mass produce high-quality precision targets at this rate is beyond the current state of the art. Techniques that are scalable to high production rates, however have been identified for all the necessary process steps, and many have been tested in laboratory experiments or are similar to current commercial manufacturing processes. A baseline target factory conceptual design is described, and its capital and operating costs are estimated. The result is a total production cost of similar to 16c/target. At this level, target production represents similar to 6% of the estimated cost of electricity from a 1-GW(electric) IFE power plant. Cost scaling relationships are presented and used to show the variation in target cost with production rate and plant power levels.
引用
收藏
页码:280 / 290
页数:11
相关论文
共 50 条
  • [1] AUTOMATED TARGET PRODUCTION FOR INERTIAL FUSION ENERGY
    MONSLER, MJ
    MEIER, WR
    [J]. FUSION TECHNOLOGY, 1994, 26 (03): : 873 - 880
  • [2] Target physics for inertial fusion energy
    MartinezVal, JM
    Velarde, G
    Eliezer, S
    [J]. CURRENT TRENDS IN INTERNATIONAL FUSION RESEARCH, 1997, : 43 - 65
  • [3] The production and delivery of inertial fusion energy power plant fuel: The cryogenic target
    Bozek, A. S.
    Alexander, N. B.
    Bittner, D.
    Carlson, L.
    Drake, T. J.
    Flint, G. W.
    Frey, D. T.
    Goodin, D. T.
    Grant, S.
    Hund, J. F.
    Kilkenny, J. D.
    Petzoldt, R. W.
    Schroen, D. G.
    Sternke, R. W.
    Streit, J. E.
    Vermillion, B. A.
    [J]. FUSION ENGINEERING AND DESIGN, 2007, 82 (15-24) : 2171 - 2175
  • [4] Demonstrating a target supply for inertial fusion energy
    Goodin, DT
    Alexander, NB
    Brown, LC
    Callahan, DA
    Ebey, PS
    Frey, DT
    Gallix, R
    Geller, DA
    Gibson, CR
    Hoffer, JK
    Maxwell, JL
    McQuillan, BW
    Nikroo, A
    Nobile, A
    Olson, C
    Petzoldt, RW
    Raffray, R
    Rickman, WS
    Rochau, G
    Schroen, DG
    Sethian, J
    Sheliak, JD
    Streit, JE
    Tillack, M
    Vermillion, BA
    Valmianski, EI
    [J]. FUSION SCIENCE AND TECHNOLOGY, 2005, 47 (04) : 1131 - 1138
  • [5] TARGET INJECTION METHODS FOR INERTIAL FUSION ENERGY
    PETZOLDT, RW
    MOIR, RW
    [J]. FUSION TECHNOLOGY, 1994, 26 (03): : 896 - 905
  • [6] Target injection and tracking for inertial fusion energy
    Petzoldt, RW
    Moir, RW
    [J]. FUSION ENGINEERING AND DESIGN, 1996, 32-33 : 113 - 121
  • [7] Lead (Pb) Hohlraum: Target for Inertial Fusion Energy
    Ross, J. S.
    Amendt, P.
    Atherton, L. J.
    Dunne, M.
    Glenzer, S. H.
    Lindl, J. D.
    Meeker, D.
    Moses, E. I.
    Nikroo, A.
    Wallace, R.
    [J]. SCIENTIFIC REPORTS, 2013, 3
  • [8] Lead (Pb) Hohlraum: Target for Inertial Fusion Energy
    J. S. Ross
    P. Amendt
    L. J. Atherton
    M. Dunne
    S. H. Glenzer
    J. D. Lindl
    D. Meeker
    E. I. Moses
    A. Nikroo
    R. Wallace
    [J]. Scientific Reports, 3
  • [9] Shock ignition target design for inertial fusion energy
    Schmitt, Andrew J.
    Bates, Jason W.
    Obenschain, Steven P.
    Zalesak, Steven T.
    Fyfe, David E.
    [J]. PHYSICS OF PLASMAS, 2010, 17 (04)
  • [10] An approach to hydrogen production by inertial fusion energy
    Imasaki, K.
    Li, D.
    [J]. LASER AND PARTICLE BEAMS, 2007, 25 (01) : 99 - 105