Non-linear process convolutions for multi-output Gaussian processes

被引:0
|
作者
Alvarez, Mauricio A. [1 ]
Ward, Wil O. C. [1 ]
Guarnizo, Cristian [2 ]
机构
[1] Univ Sheffield, Dept Comp Sci, Sheffield, S Yorkshire, England
[2] Univ Tecnol Pereira, Fac Engn, Pereira, Colombia
基金
英国工程与自然科学研究理事会;
关键词
MODELS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper introduces a non-linear version of the process convolution formalism for building covariance functions for multi-output Gaussian processes. The non-linearity is introduced via Volterra series, one series per each output. We provide closed-form expressions for the mean function and the covariance function of the approximated Gaussian process at the output of the Volterra series. The mean function and covariance function for the joint Gaussian process are derived using formulae for the product moments of Gaussian variables. We compare the performance of the non-linear model against the classical process convolution approach in one synthetic dataset and two real datasets.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Scalable Exact Inference in Multi-Output Gaussian Processes
    Bruinsma, Wessel P.
    Perim, Eric
    Tebbutt, Will
    Hosking, J. Scott
    Solin, Arno
    Turner, Richard E.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [12] Multi-output Gaussian processes for species distribution modelling
    Ingram, Martin
    Vukcevic, Damjan
    Golding, Nick
    METHODS IN ECOLOGY AND EVOLUTION, 2020, 11 (12): : 1587 - 1598
  • [13] Bayesian Alignments of Warped Multi-Output Gaussian Processes
    Kaiser, Markus
    Otte, Clemens
    Runkler, Thomas
    Ek, Carl Henrik
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [14] Generalized multi-output Gaussian process censored regression
    Gammelli, Daniele
    Rolsted, Kasper Pryds
    Pacino, Dario
    Rodrigues, Filipe
    PATTERN RECOGNITION, 2022, 129
  • [15] Multi-output Gaussian processes for multi-population longevity modelling
    Huynh, Nhan
    Ludkovski, Mike
    ANNALS OF ACTUARIAL SCIENCE, 2021, 15 (02) : 318 - 345
  • [16] Multi-Output Gaussian Processes for Crowdsourced Traffic Data Imputation
    Rodrigues, Filipe
    Henrickson, Kristian
    Pereira, Francisco C.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2019, 20 (02) : 594 - 603
  • [17] Modeling Neonatal EEG Using Multi-Output Gaussian Processes
    Caro, Victor
    Ho, Jou-Hui
    Witting, Scarlet
    Tobar, Felipe
    IEEE ACCESS, 2022, 10 : 32912 - 32927
  • [18] Non-Linear Predictive Control of Multi-Input Multi-Output Vehicle Suspension System
    Malekshahi, Ahmad
    Mirzaei, Mehdi
    Aghasizade, Sajjad
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2015, 34 (01) : 87 - 105
  • [19] Multi-output, multi-level, multi-gate design using non-linear programming
    Dimopoulos, A. C.
    Pavlatos, C.
    Papakonstantinou, G.
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2022, 50 (08) : 2960 - 2968
  • [20] Regularized Multi-Output Gaussian Convolution Process With Domain Adaptation
    Wang, Xinming
    Wang, Chao
    Song, Xuan
    Kirby, Levi
    Wu, Jianguo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 6142 - 6156