Numerical and experimental analysis on thermal energy storage of polyethylene/functionalized graphene composite phase change materials

被引:44
|
作者
Chavan, Santosh [1 ]
Gumtapure, Veershetty [1 ]
Perumal, Arumuga D. [1 ]
机构
[1] Natl Inst Technol Karnataka, Dept Mech Engn, Mangalore 575025, India
关键词
Composite phase change materials; Thermal storage material (TSM); Thermal energy storage (TES); Linear low-density polyethylene (LLDPE); Melting and Solidification; FIN HEAT SINKS; ELECTRONICS; MANAGEMENT;
D O I
10.1016/j.est.2019.101045
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The main driving force behind the present work is environmental issues caused due to the usage of plastics, and energy issues. Current work attempts to address these problems by converting recycled plastics into thermal storage materials (TSM). Unfavorable thermophysical properties of plastic make it impractical but these inadequacies can be amended by blending with additives of superior thermophysical properties like, functionalized graphene. Numerical and experimental analysis are carried out to assess the thermal performance of TSMs (LLDPE, CPCM-1, CPCM-2 and CPCM-3) and check the compatibility of the materials. The phase change temperature of TSM is 123 to 125 degrees C and heat of fusion is 71.95 to 97 kJ/kg. Several thermal characteristics are analyzed to assess thermal performance and the amount of heat energy supplied, rate of heat transfer, and heat storage efficiency are deliberated. Results shown energy level enhancement of 43.17, 50.42, 54 and 50.61% for LLDPE, CPCM-1, CPCM-2 and CPCM-3 respectively. Among the TSM CPCM-2 shows relatively better storage capability (54% enhancement) due to incorporation of optimum concentration of enhancing material. The solidification process takes place through convection and radiation mode of heat transfer, at the completion of solidification process the TSM energy content reduces to 97.5, 96, 96 and 96% for LLDPE, CPCM-1,CPCM-2 and CPCM-3 respectively. This work concludes that, recycled plastics can be blended and it can be converted into efficient thermal storage material.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Effect of inclination on the thermal response of composite phase change materials for thermal energy storage
    Yang, Xiaohu
    Guo, Zengxu
    Liu, Yanhua
    Jin, Liwen
    He, Ya-Ling
    APPLIED ENERGY, 2019, 238 : 22 - 33
  • [32] Preparation of paraffin/silica–graphene shape-stabilized composite phase change materials for thermal energy storage
    Mahnaz Falahatian
    Fathallah Karimzadeh
    Keyvan Raeissi
    Journal of Materials Science: Materials in Electronics, 2022, 33 : 12846 - 12856
  • [33] Enhanced Thermal Properties of Phase Change Materials through Surfactant-Functionalized Graphene Nanoplatelets for Sustainable Energy Storage
    Fikri, M. Arif
    Suraparaju, Subbarama Kousik
    Samykano, M.
    Pandey, A. K.
    Rajamony, Reji Kumar
    Kadirgama, K.
    Ghazali, M. F.
    ENERGIES, 2023, 16 (22)
  • [34] Phase change materials for thermal energy storage
    Pielichowska, Kinga
    Pielichowski, Krzysztof
    PROGRESS IN MATERIALS SCIENCE, 2014, 65 : 67 - 123
  • [35] Thermal analysis and heat capacity study of polyethylene glycol (PEG) phase change materials for thermal energy storage applications
    Kou, Yan
    Wang, Siyu
    Luo, Jipeng
    Sun, Keyan
    Zhang, Jian
    Tan, Zhicheng
    Shi, Quan
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2019, 128 : 259 - 274
  • [36] Granular phase change materials for thermal energy storage: Experiments and numerical simulations
    Rady, Mohamed
    APPLIED THERMAL ENGINEERING, 2009, 29 (14-15) : 3149 - 3159
  • [37] Kaolinite stabilized paraffin composite phase change materials for thermal energy storage
    Li, Chuanchang
    Fu, Liangjie
    Ouyang, Jing
    Tang, Aidong
    Yang, Huaming
    APPLIED CLAY SCIENCE, 2015, 115 : 212 - 220
  • [38] Simulation Analysis of Thermal Storage Process of Phase Change Energy Storage Materials
    Guan, Biao
    Feng, Yongbao
    Peng, Qingsong
    2018 4TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION, 2019, 252
  • [39] Study on relative thermal conductivity of phase change energy storage composite materials
    Li, Qinghai
    Zhou, Quan
    Guo, Hongbin
    Li, Dongxu
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2014, 17 (06): : 984 - 988
  • [40] Composite macrocapsule of phase change materials/expanded graphite for thermal energy storage
    Li, Wei
    Zhang, Rong
    Jiang, Nan
    Tang, Xiao-fen
    Shi, Hai-feng
    Zhang, Xing-xiang
    Zhang, Yuankai
    Dong, Lin
    Zhang, Ningxin
    ENERGY, 2013, 57 : 607 - 614