Nonlinear Adaptive Predictive Functional Control Based on the Takagi-Sugeno Model for Average Cracking Outlet Temperature of the Ethylene Cracking Furnace

被引:36
|
作者
Shi, Huiyuan [1 ]
Su, Chengli [1 ]
Cao, Jiangtao [1 ]
Li, Ping [1 ]
Liang, Jianping [2 ]
Zhong, Guocai [2 ]
机构
[1] Liaoning Shihua Univ, Sch Informat & Control Engn, Fushun 113001, Peoples R China
[2] PetroChina Sichuan Petrochem Co Ltd, Pengzhou 611900, Peoples R China
关键词
HYBRID SEMIBATCH REACTOR; INTELLIGENT CONTROL; FUZZY MODEL; SYSTEM; STABILITY; ALGORITHM; PRESSURE; DESIGN;
D O I
10.1021/ie503531z
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The conventional PID control has been proven insufficient and incapable for this particular petro-chemical process. This paper proposes a nonlinear adaptive predictive functional control (NAPFC) algorithm based on the TakagiSugeno (T-S) model for average cracking outlet temperature (ACOT) of the ethylene cracking furnace. In this algorithm, in order to overcome the effect on system performance under model mismatch, the structure parameters of the T-S fuzzy model are confirmed, and the model consequent parameters are identified online using the forgetting factor least-square method. Prediction output is calculated according to the identified parameters instead of computing the Diophantine equation, thereby obtaining directly the predictive control law and avoiding the complex computation of the inverse of the matrix. Application results on ACOT of the ethylene cracking furnace show the proposed control strategy has strong tracking ability and robustness.
引用
收藏
页码:1849 / 1860
页数:12
相关论文
共 50 条
  • [21] Predictive control by local linearization of a Takagi-Sugeno fuzzy model
    Roubos, JA
    Babuska, R
    Bruijn, PM
    Verbruggen, HB
    1998 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AT THE IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE - PROCEEDINGS, VOL 1-2, 1998, : 37 - 42
  • [22] Fuzzy model-based predictive control using Takagi-Sugeno models
    Roubos, JA
    Mollov, S
    Babuska, R
    Verbruggen, HB
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 1999, 22 (1-2) : 3 - 30
  • [23] Takagi-Sugeno fuzzy generalized predictive control for a class of nonlinear systems
    Shi, Ke
    Wang, Bin
    Yang, Lan
    Jian, Shikang
    Bi, Jikai
    NONLINEAR DYNAMICS, 2017, 89 (01) : 169 - 177
  • [24] Fuzzy model-based predictive control using Takagi-Sugeno models
    Roubos, J.A.
    Mollov, S.
    Babuška, R.
    Verbruggen, H.B.
    International Journal of Approximate Reasoning, 1999, 22 (01): : 3 - 30
  • [25] An Adaptive Takagi-Sugeno Fuzzy Model-Based Predictive Controller for Piezoelectric Actuators
    Cheng, Long
    Liu, Weichuan
    Hou, Zeng-Guang
    Huang, Tingwen
    Yu, Junzhi
    Tan, Min
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (04) : 3048 - 3058
  • [26] An Adaptive Model Predictive Control Strategy for Nonlinear Distributed Parameter Systems using the Type-2 Takagi-Sugeno Model
    Wang, Mengling
    Paulson, Joel A.
    Yan, Huaicheng
    Shi, Hongbo
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2016, 18 (05) : 792 - 805
  • [27] Optimal Control of a Ball and Beam Nonlinear Model Based on Takagi-Sugeno Fuzzy Model
    Miguel Adanez, Jose
    Mohammed Al-Hadithi, Basil
    Jimenez, Agustin
    Matia, Fernando
    ADVANCES IN FUZZY LOGIC AND TECHNOLOGY 2017, VOL 1, 2018, 641 : 1 - 11
  • [28] Nonlinear Control of Wind Turbines with Hydrostatic Transmission Based on Takagi-Sugeno Model
    Schulte, Horst
    Georg, Soeren
    SCIENCE OF MAKING TORQUE FROM WIND 2014 (TORQUE 2014), 2014, 524
  • [29] Nonlinear Model Following Control via Takagi-Sugeno Fuzzy Model
    Taniguchi, Tadanari
    Tanaka, Kazuo
    Journal of Advanced Computational Intelligence and Intelligent Informatics, 1999, 3 (02): : 68 - 74
  • [30] Model Predictive Control Based on a Takagi–Sugeno Fuzzy Model for Nonlinear Systems
    Yong-Lin Kuo
    Ilmiyah Elrosa Citra Resmi
    International Journal of Fuzzy Systems, 2019, 21 : 556 - 570