Quantum critical behavior of antiferromagnetic itinerant systems with van Hove singularities

被引:7
|
作者
Katanin, A. [1 ,2 ]
机构
[1] Inst Met Phys, Ekaterinburg 620041, Russia
[2] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany
关键词
ELECTRONIC TOPOLOGICAL TRANSITION; MEAN-FIELD; HUBBARD; ANOMALIES; STATE; MODEL;
D O I
10.1103/PhysRevB.81.165118
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The interplay of magnetic and superconducting fluctuations in two-dimensional systems with van Hove singularities in the electronic spectrum is considered within the functional renormalization-group (fRG) approach. While the fRG flow has to be stopped at a certain minimal temperature T-RG(min), we study temperature dependence of magnetic and superconducting susceptibilities below T-RG(min) to obtain the crossover temperatures to the regime with strong magnetic and superconducting fluctuations. Near half filling we obtain the largest crossover temperature, corresponding to a regime with strong commensurate magnetic fluctuations, which is replaced by a regime with strong incommensurate fluctuations further away from half filling. With further decreasing density the system undergoes quantum phase transition from incommensurate to paramagnetic phase. Similarly to results of Hertz-Moriya-Millis approach, the temperature dependence of the inverse (in-commensurate) magnetic susceptibility at the magnetic quantum-critical point is found almost linear in temperature.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Fermi surface and van hove singularities in the itinerant metamagnet Sr3Ru2O7
    Tamai, A.
    Allan, M. P.
    Mercure, J. F.
    Meevasana, W.
    Dunkel, R.
    Lu, D. H.
    Perry, R. S.
    Mackenzie, A. P.
    Singh, D. J.
    Shen, Z. -X.
    Baumberger, F.
    PHYSICAL REVIEW LETTERS, 2008, 101 (02)
  • [32] Antiferromagnetic excitations and van Hove singularities in YBa2Cu3O6+x
    Blumberg, G
    Stojkovic, BP
    Klein, MV
    PHYSICAL REVIEW B, 1995, 52 (22): : 15741 - 15744
  • [33] Do Van Hove singularities in leads influence tunneling current through quantum dot?
    Krawiec, M
    Domanski, T
    Wysokinski, KI
    ACTA PHYSICA POLONICA A, 1998, 94 (03) : 411 - 414
  • [34] Quantum critical behavior in itinerant electron systems:: Eliashberg theory and instability of a ferromagnetic quantum critical point
    Rech, Jerome
    Pepin, Catherine
    Chubukov, Andrey V.
    PHYSICAL REVIEW B, 2006, 74 (19)
  • [35] Simple theory for the cuprates: the antiferromagnetic van Hove scenario
    Florida State Univ, Tallahassee, United States
    J Phys Chem Solids, 12 (1709-1710):
  • [36] The search for superconductivity at van Hove singularities in carbon nanotubes
    Yang, Yanfei
    Fedorov, Georgy
    Zhang, Jian
    Tselev, Alexander
    Shafranjuk, Serhii
    Barbara, Paola
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2012, 25 (12):
  • [37] Observation of Van Hove singularities in twisted graphene layers
    Li, Guohong
    Luican, A.
    Lopes dos Santos, J. M. B.
    Castro Neto, A. H.
    Reina, A.
    Kong, J.
    Andrei, E. Y.
    NATURE PHYSICS, 2010, 6 (02) : 109 - 113
  • [38] Van Hove singularities in the quark-gluon plasma
    Thoma, MH
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 92 : 162 - 170
  • [39] IMPACT IONIZATION THRESHOLDS AS GENERALIZATIONS OF VAN HOVE SINGULARITIES
    LANDSBERG, PT
    ROBBINS, DJ
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1977, 10 (14): : 2717 - 2739
  • [40] A SIMPLE THEORY FOR THE CUPRATES - THE ANTIFERROMAGNETIC VAN HOVE SCENARIO
    DAGOTTO, E
    NAZARENKO, A
    MOREO, A
    HAAS, S
    BONINSEGNI, M
    JOURNAL OF SUPERCONDUCTIVITY, 1995, 8 (04): : 483 - 486