HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON A CONVOLUTIONAL NEURAL NETWORK AND DISCONTINUITY PRESERVING RELAXATION

被引:0
|
作者
Gao, Qishuo [1 ]
Lim, Samsung [1 ]
机构
[1] Univ New South Wales, Sch Civil & Environm Engn, Sydney, NSW, Australia
关键词
Hyperspectral image (HSI) classification; convolutional neural network (CNN); discontinuity preserving relaxation (DPR) method;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a novel method for hyperspectral image classification to take advantage of the merits of a convolutional neural network (CNN) and the spatial contextual information of hyperspectral imagery (HSI). We built a novel network consisting of several convolutional, pooling and activation layers to extract the effective features and predict the class membership probability distribution vectors for HSI pixels. Furthermore, in order to fully exploit the spatial contextual information and improve the classification accuracy under the condition of limited training samples, a promising discontinuity preserving relaxation (DPR) algorithm is applied to process the probabilistic results obtained by the CNN work. The proposed method was tested on two widely-used hyperspectral data sets: the Indian Pines and University of Pavia data sets. Experiments revealed that the proposed method can provide competitive results compared to some state-of-the-art methods.
引用
收藏
页码:3591 / 3594
页数:4
相关论文
共 50 条
  • [31] A Convolutional Neural Network With Mapping Layers for Hyperspectral Image Classification
    Li, Rui
    Pan, Zhibin
    Wang, Yang
    Wang, Ping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3136 - 3147
  • [32] Recurrent Feedback Convolutional Neural Network for Hyperspectral Image Classification
    Li, Heng-Chao
    Li, Shuang-Shuang
    Hu, Wen-Shuai
    Feng, Jun-Huan
    Sun, Wei-Wei
    Du, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [33] A Lightweight Hybrid Convolutional Neural Network for Hyperspectral Image Classification
    Ma, Xiaohu
    Kang, Xudong
    Qin, Huawei
    Wang, Wuli
    Ren, Guangbo
    Wang, Jianbu
    Liu, Baodi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [34] A Lightweight Conditional Convolutional Neural Network for Hyperspectral Image Classification
    Wu, Linfeng
    Wang, Huajun
    Wang, Huiqing
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2023, 89 (07): : 413 - 423
  • [35] CONVOLUTIONAL NEURAL NETWORK BASED CLASSIFICATION FOR HYPERSPECTRAL DATA
    Jia, Peiyuan
    Zhang, Miao
    Yu, Wenbo
    Shen, Fei
    Shen, Yi
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5075 - 5078
  • [36] Classification of Hyperspectral Images based on Intrinsic Image Decomposition and Deep Convolutional Neural Network
    Beirami, Behnam Asghari
    Mokhtarzade, Mehdi
    2020 6TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS), 2020,
  • [37] Joint spatial-spectral hyperspectral image classification based on convolutional neural network
    Han, Mengxin
    Cong, Runmin
    Li, Xinyu
    Fu, Huazhu
    Lei, Jianjun
    PATTERN RECOGNITION LETTERS, 2020, 130 (130) : 38 - 45
  • [38] Modified Convolutional Neural Network based on Adaptive Patch Extraction for Hyperspectral Image Classification
    Hamouda, Maissa
    Ettabaa, Karim Saheb
    Bouhlel, Med Salim
    2018 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2018,
  • [39] Hyperspectral Image Classification via Spatial Shuffle-Based Convolutional Neural Network
    Wang, Zhihui
    Cao, Baisong
    Liu, Jun
    REMOTE SENSING, 2023, 15 (16)
  • [40] A Multidimensional Sequential Convolutional Neural Network-Based Method for Hyperspectral Image Classification
    Huang, Qiongdan
    Wang, Jiapeng
    Li, Liang
    Kang, Shilin
    IAENG International Journal of Computer Science, 2024, 51 (10) : 1516 - 1526