Machine learning approach with baseline clinical data forecasting depression relapse in bipolar disorder

被引:0
|
作者
Dias, R.
Salvini, R. [1 ]
Nierenberg, A. [2 ]
Lafer, B. [3 ]
机构
[1] Univ Fed Goias, Informat, Goiania, Go, Brazil
[2] Harvard Med Sch, Massachussets Gen Hosp, Psychiat Bipolar Clin & Res Program, Boston, MA USA
[3] Univ Sao Paulo, Fac Med, Psychiat Bipolar Disorder Res Program, Sao Paulo, Brazil
关键词
D O I
暂无
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
P-108
引用
收藏
页码:103 / 103
页数:1
相关论文
共 50 条
  • [22] A clinical study on bipolar disorder and chronic depression
    Tanaka, H.
    Owashi, T.
    Hida, M.
    Yokoyama, S.
    Kumata, T.
    Kudo, I.
    BIPOLAR DISORDERS, 2012, 14 : 129 - 129
  • [23] A Multi-Relational Model for Depression Relapse in Patients with Bipolar Disorder
    Salvini, Rogerio
    Dias, Rodrigo da Silva
    Lafer, Beny
    Dutra, Ines
    MEDINFO 2015: EHEALTH-ENABLED HEALTH, 2015, 216 : 741 - 745
  • [24] Lurasidone in the Treatment of Bipolar Depression: Effect of Baseline Depression Severity on Clinical Outcome
    Pikalov, Andrei
    Tsai, Joyce
    Loebel, Antony
    INTERNATIONAL JOURNAL OF NEUROPSYCHOPHARMACOLOGY, 2016, 19 : 59 - 60
  • [25] A Machine Learning Approach to Volatility Forecasting*
    Christensen, Kim
    Siggaard, Mathias
    Veliyev, Bezirgen
    JOURNAL OF FINANCIAL ECONOMETRICS, 2023, 21 (05) : 1680 - 1727
  • [26] Using polygenic scores and clinical data for bipolar disorder patient stratification and lithium response prediction: machine learning approach (vol , pg 1, 2022)
    Cearns, Micah
    Amare, Azmeraw T.
    Schubert, Klaus Oliver
    Thalamuthu, Anbupalam
    Frank, Joseph
    Streit, Fabian
    Adli, Mazda
    Akula, Nirmala
    Akiyama, Kazufumi
    Ardau, Raffaella
    Arias, Barbara
    Aubry, JeanMichel
    Backlund, Lena
    Bhattacharjee, Abesh Kumar
    Bellivier, Frank
    Benabarre, Antonio
    Bengesser, Susanne
    Biernacka, Joanna M.
    Birner, Armin
    Brichant-Petitjean, Clara
    Cervantes, Pablo
    Chen, HsiChung
    Chillotti, Caterina
    Cichon, Sven
    Cruceanu, Cristiana
    Czerski, Piotr M.
    Dalkner, Nina
    Dayer, Alexandre
    Degenhardt, Franziska
    Zompo, Maria Del
    DePaulo, J. Raymond
    etain, Bruno
    Falkai, Peter
    Forstner, Andreas J.
    Frisen, Louise
    Frye, Mark A.
    Fullerton, Janice M.
    Gard, Sebastien
    Garnham, Julie S.
    Goes, Fernando S.
    Grigoroiu-Serbanescu, Maria
    Grof, Paul
    Hashimoto, Ryota
    Hauser, Joanna
    Heilbronner, Urs
    Herms, Stefan
    Hoffmann, Per
    Hofmann, Andrea
    Hou, Liping
    Hsu, Yi-Hsiang
    BRITISH JOURNAL OF PSYCHIATRY, 2022, 221 (02) : 494 - 494
  • [27] Forecasting, Data Mining and Machine Learning
    OPERATIONS RESEARCH PROCEEDINGS 2010, 2011, : 1 - 1
  • [28] Discriminating between bipolar and major depressive disorder using a machine learning approach and resting-state EEG data
    Ravan, M.
    Noroozi, A.
    Sanchez, M. Margarette
    Borden, L.
    Alam, N.
    Flor-Henry, P.
    Hasey, G.
    CLINICAL NEUROPHYSIOLOGY, 2023, 146 : 30 - 39
  • [29] A peripheral inflammatory signature discriminates bipolar from unipolar depression: A machine learning approach
    Poletti, Sara
    Vai, Benedetta
    Mazza, Mario Gennaro
    Zanardi, Raffaella
    Lorenzi, Cristina
    Calesella, Federico
    Cazzetta, Silvia
    Branchi, Igor
    Colombo, Cristina
    Furlan, Roberto
    Benedetti, Francesco
    PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2021, 105
  • [30] Forecasting Depression in Bipolar Disorder (vol 59, pg 2801, 2012)
    Moore, Paul J.
    Little, Max A.
    McSharry, Patrick E.
    Geddes, John R.
    Goodwin, Guy M.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (12) : 3550 - 3550