Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response

被引:104
|
作者
Crabbe, Laure [1 ]
Thomas, Aubin [1 ]
Pantesco, Veronique [2 ]
De Vos, John [2 ]
Pasero, Philippe [1 ]
Lengronne, Armelle [1 ]
机构
[1] CNRS, Inst Human Genet, Unite Propre Rech, F-1142 Montpellier, France
[2] Univ Montpellier 1, INSERM, Inst Rech Biotherapie, CHU Montpellier,Hop St Eloi,U847, Montpellier, France
关键词
S-PHASE CHECKPOINT; SISTER-CHROMATID COHESION; DNA-REPLICATION; SACCHAROMYCES-CEREVISIAE; BUDDING YEAST; GENOME INTEGRITY; FIRING ORIGINS; FACTOR-C; COMPLEX; DAMAGE;
D O I
10.1038/nsmb.1932
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Maintenance of genome integrity relies on surveillance mechanisms that detect and signal arrested replication forks. Although evidence from budding yeast indicates that the DNA replication checkpoint (DRC) is primarily activated by single-stranded DNA (ssDNA), studies in higher eukaryotes have implicated primer ends in this process. To identify factors that signal primed ssDNA in Saccharomyces cerevisiae, we have screened a collection of checkpoint mutants for their ability to activate the DRC, using the repression of late origins as readout for checkpoint activity. This quantitative analysis reveals that neither RFC(Rad24) and the 9-1-1 clamp nor the alternative clamp loader RFC(Elg1) is required to signal paused forks. In contrast, we found that RFC(Ctf18) is essential for the Mrc1-dependent activation of Rad53 and for the maintenance of paused forks. These data identify RFC(Ctf18) as a key DRC mediator, potentially bridging Mrc1 and primed ssDNA to signal paused forks.
引用
收藏
页码:1391 / U137
页数:8
相关论文
共 50 条
  • [21] Chromatin remodeling factor CHR18 interacts with replication protein RPA1A to regulate the DNA replication stress response in Arabidopsis
    Han, Jia-Jia
    Song, Ze-Ting
    Sun, Jing-Liang
    Yang, Zheng-Ting
    Xian, Meng-Jun
    Wang, Shuo
    Sun, Ling
    Liu, Jian-Xiang
    NEW PHYTOLOGIST, 2018, 220 (02) : 476 - 487
  • [22] The key role of Warburg effect in SARS-CoV-2 replication and associated inflammatory response
    Icard, Philippe
    Lincet, Hubert
    Wu, Zherui
    Coquerel, Antoine
    Forgez, Patricia
    Alifano, Marco
    Fournel, Ludovic
    BIOCHIMIE, 2021, 180 : 169 - 177
  • [23] Constitutive role of the Fanconi anemia D2 gene in the replication stress response
    Tian, Yanyan
    Shen, Xi
    Wang, Rui
    Klages-Mundt, Naeh L.
    Lynn, Erica J.
    Martin, Sara K.
    Ye, Yin
    Gao, Min
    Chen, Junjie
    Schlacher, Katharina
    Li, Lei
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2017, 292 (49) : 20184 - 20195
  • [24] Role of DNA damage response pathways in preventing carcinogenesis caused by intrinsic replication stress
    Wallace, M. D.
    Southard, T. L.
    Schimenti, K. J.
    Schimenti, J. C.
    ONCOGENE, 2014, 33 (28) : 3688 - 3695
  • [25] Role of DNA damage response pathways in preventing carcinogenesis caused by intrinsic replication stress
    M D Wallace
    T L Southard
    K J Schimenti
    J C Schimenti
    Oncogene, 2014, 33 : 3688 - 3695
  • [26] A gemcitabine sensitivity screen identifies a role for NEK9 in the replication stress response
    Smith, Scott C.
    Petrova, Aleksandra V.
    Madden, Matthew Z.
    Wang, Hongyan
    Pan, Yunfeng
    Warren, Matthew D.
    Hardy, Claire W.
    Liang, Dong
    Liu, Elaine A.
    Robinson, M. Hope
    Rudra, Soumon
    Wang, Jie
    Ehdaivand, Shahrzad
    Torres, Mylin A.
    Wang, Ya
    Yu, David S.
    NUCLEIC ACIDS RESEARCH, 2014, 42 (18) : 11517 - 11527
  • [27] Analysis of Spatial Correlations Between Patterns of DNA Damage Response and DNA Replication in Nuclei of Cells Subjected to Replication Stress or Oxidative Damage
    Bernas, Tytus
    Berniak, Krzysztof
    Rybak, Paulina
    Zarebski, Miroslaw
    Zhao, Hong
    Darzynkiewicz, Zbigniew
    Dobrucki, Jerzy W.
    CYTOMETRY PART A, 2013, 83 (10) : 925 - 932
  • [28] RAD18, WRNIP1 and ATMIN promote ATM signalling in response to replication stress
    N Kanu
    T Zhang
    R A Burrell
    A Chakraborty
    J Cronshaw
    C DaCosta
    E Grönroos
    H N Pemberton
    E Anderton
    L Gonzalez
    S Sabbioneda
    H D Ulrich
    C Swanton
    A Behrens
    Oncogene, 2016, 35 : 4009 - 4019
  • [29] The yeast proteases Ddi1 and Wss1 are both involved in the DNA replication stress response
    Svoboda, Michal
    Konvalinka, Jan
    Trempe, Jean-Francois
    Saskovaa, Klara Grantz
    DNA REPAIR, 2019, 80 : 45 - 51
  • [30] Functional analysis of the porcine USP18 and its role during porcine arterivirus replication
    Ait-Ali, Tahar
    Wilson, Alison W.
    Finlayson, Heather
    Carre, Wilfrid
    Ramaiahgari, Sreenivasa Chakravarthy
    Westcott, David G.
    Waterfall, Martin
    Frossard, Jean-Pierre
    Baek, Kwang-Hyun
    Drew, Trevor W.
    Bishop, Stephen C.
    Archibald, Alan L.
    GENE, 2009, 439 (1-2) : 35 - 42