Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response

被引:104
|
作者
Crabbe, Laure [1 ]
Thomas, Aubin [1 ]
Pantesco, Veronique [2 ]
De Vos, John [2 ]
Pasero, Philippe [1 ]
Lengronne, Armelle [1 ]
机构
[1] CNRS, Inst Human Genet, Unite Propre Rech, F-1142 Montpellier, France
[2] Univ Montpellier 1, INSERM, Inst Rech Biotherapie, CHU Montpellier,Hop St Eloi,U847, Montpellier, France
关键词
S-PHASE CHECKPOINT; SISTER-CHROMATID COHESION; DNA-REPLICATION; SACCHAROMYCES-CEREVISIAE; BUDDING YEAST; GENOME INTEGRITY; FIRING ORIGINS; FACTOR-C; COMPLEX; DAMAGE;
D O I
10.1038/nsmb.1932
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Maintenance of genome integrity relies on surveillance mechanisms that detect and signal arrested replication forks. Although evidence from budding yeast indicates that the DNA replication checkpoint (DRC) is primarily activated by single-stranded DNA (ssDNA), studies in higher eukaryotes have implicated primer ends in this process. To identify factors that signal primed ssDNA in Saccharomyces cerevisiae, we have screened a collection of checkpoint mutants for their ability to activate the DRC, using the repression of late origins as readout for checkpoint activity. This quantitative analysis reveals that neither RFC(Rad24) and the 9-1-1 clamp nor the alternative clamp loader RFC(Elg1) is required to signal paused forks. In contrast, we found that RFC(Ctf18) is essential for the Mrc1-dependent activation of Rad53 and for the maintenance of paused forks. These data identify RFC(Ctf18) as a key DRC mediator, potentially bridging Mrc1 and primed ssDNA to signal paused forks.
引用
收藏
页码:1391 / U137
页数:8
相关论文
共 50 条
  • [1] Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response
    Laure Crabbé
    Aubin Thomas
    Véronique Pantesco
    John De Vos
    Philippe Pasero
    Armelle Lengronne
    Nature Structural & Molecular Biology, 2010, 17 : 1391 - 1397
  • [2] CTF18 interacts with replication protein A in response to replication stress
    Kaneko, Yuta
    Daitoku, Hiroaki
    Komeno, Chihiro
    Fukamizu, Akiyoshi
    MOLECULAR MEDICINE REPORTS, 2016, 14 (01) : 367 - 372
  • [3] The Ctf18 RFC-like complex positions yeast telomeres but does not specify their replication time
    Hiraga, S
    Robertson, ED
    Donaldson, AD
    EMBO JOURNAL, 2006, 25 (07): : 1505 - 1514
  • [4] Quantitative Proteomic Analysis of Chromatin Reveals that Ctf18 Acts in the DNA Replication Checkpoint
    Kubota, Takashi
    Hiraga, Shin-ichiro
    Yamada, Kayo
    Lamond, Angus I.
    Donaldson, Anne D.
    MOLECULAR & CELLULAR PROTEOMICS, 2011, 10 (07)
  • [5] The role of RTF2 in replication and replication stress response
    Smogorzewska, Agata
    Broton, Cayla
    Blobel, Nicolas J.
    Conti, Brooke
    CANCER RESEARCH, 2024, 84 (01)
  • [6] A key role for replication factor C in DNA replication checkpoint function in fission yeast
    Reynolds, N
    Fantes, PA
    MacNeill, SA
    NUCLEIC ACIDS RESEARCH, 1999, 27 (02) : 462 - 469
  • [7] DNA Replication and Sister Chromatid Cohesion 1 (DSCC1) of the Replication Factor Complex CTF18-RFC is Critical for Colon Cancer Cell Growth
    Kim, Jong-Tae
    Choi, Hee Jun
    Park, Sang Yoon
    Oh, Byung Moo
    Hwang, Yo Sep
    Baek, Kyoung Eun
    Lee, Young-Ha
    Kim, Hee Cheol
    Lee, Hee Gu
    JOURNAL OF CANCER, 2019, 10 (24): : 6142 - 6153
  • [8] The Role of the Transcriptional Response to DNA Replication Stress
    Herlihy, Anna E.
    de Bruin, Robertus A. M.
    GENES, 2017, 8 (03):
  • [9] Ctf18-RFC and DNA Pol ε form a stable leading strand polymerase/clamp loader complex required for normal and perturbed DNA replication
    Stokes, Katy
    Winczura, Alicja
    Song, Boyuan
    De Piccoli, Giacomo
    Grabarczyk, Daniel B.
    NUCLEIC ACIDS RESEARCH, 2020, 48 (14) : 8128 - 8145
  • [10] Autophagy role(s) in response to oncogenes and DNA replication stress
    Vanzo, Riccardo
    Bartkova, Jirina
    Merchut-Maya, Joanna Maria
    Hall, Arnaldur
    Bouchal, Jan
    Dyrskjot, Lars
    Frankel, Lisa B.
    Gorgoulis, Vassilis
    Maya-Mendoza, Apolinar
    Jaattela, Marja
    Bartek, Jiri
    CELL DEATH AND DIFFERENTIATION, 2020, 27 (03): : 1134 - 1153