Evaluating Advanced Machine Learning Techniques for Pulsar Detection from HTRU Survey

被引:0
|
作者
Punia, Akhil [1 ]
Sardana, Ashish [1 ]
Subashini, Monica [1 ]
机构
[1] VIT Univ, Sch Elect Engn, Vellore, Tamil Nadu, India
关键词
Machine Learning; HTRU; SVM; Random Forest; Xgboost; SMOTE; Neural Network); SELECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
High Time Resolution Universe (HTRU) Survey was conducted to search for Pulsars and Fast Transients using the Parkes Telescope in Australia. Majority of the Pulsars detections were actually false positives caused by radio frequency interference (RFI) and noise. We have used state of the art Machine Learning techniques that have improved significantly in recent years to evaluate feature importance and compare the performances of different approaches to design a binary classifier that automatically labels real Pulsar candidates. We have tried to address the problem of class imbalance by using Synthetic minority oversampling technique (SMOTE) and optimized our models by hyper parameter tuning to maximize accuracy and the geometric mean.
引用
收藏
页码:470 / 474
页数:5
相关论文
共 50 条
  • [21] Short Survey on machine learning techniques used for diabetic retinopathy detection
    Mishra, Anju
    Singh, Laxman
    Pandey, Mrinal
    2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, AND INTELLIGENT SYSTEMS (ICCCIS), 2021, : 601 - 606
  • [22] A Survey on Android Malware Detection Techniques Using Supervised Machine Learning
    Altaha, Safa J.
    Aljughaiman, Ahmed
    Gul, Sonia
    IEEE ACCESS, 2024, 12 : 173168 - 173191
  • [23] A Survey on Different Approaches for Malware Detection Using Machine Learning Techniques
    Rani, S. Soja
    Reeja, S. R.
    SUSTAINABLE COMMUNICATION NETWORKS AND APPLICATION, ICSCN 2019, 2020, 39 : 389 - 398
  • [24] A Survey on Android Malware Detection Techniques Using Machine Learning Algorithms
    Alqahtani, Ebtesam J.
    Zagrouba, Rachid
    Almuhaideb, Abdullah
    2019 SIXTH INTERNATIONAL CONFERENCE ON SOFTWARE DEFINED SYSTEMS (SDS), 2019, : 110 - 117
  • [25] A Survey on Different Plant Diseases Detection Using Machine Learning Techniques
    Hassan, Sk Mahmudul
    Amitab, Khwairakpam
    Jasinski, Michal
    Leonowicz, Zbigniew
    Jasinska, Elzbieta
    Novak, Tomas
    Maji, Arnab Kumar
    ELECTRONICS, 2022, 11 (17)
  • [26] A Survey of Machine Learning-based loT Intrusion Detection Techniques
    Long, Jing
    Fang, Fei
    Luo, Haibo
    2021 IEEE 6TH INTERNATIONAL CONFERENCE ON SMART CLOUD (SMARTCLOUD 2021), 2021, : 7 - 12
  • [27] Depression Detection From Social Networks Data Based on Machine Learning and Deep Learning Techniques: An Interrogative Survey
    Hasib, Khan Md
    Islam, Md Rafiqul
    Sakib, Shadman
    Akbar, Md. Ali
    Razzak, Imran
    Alam, Mohammad Shafiul
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (04): : 1568 - 1586
  • [28] Vela pulsar: single pulses analysis with machine learning techniques
    Lousto, Carlos O.
    Missel, Ryan
    Prajapati, Harshkumar
    Fiscella, Valentina Sosa
    Armengol, Federico G. Lopez
    Gyawali, Prashnna Kumar
    Wang, Linwei
    Cahill, Nathan D.
    Combi, Luciano
    del Palacio, Santiago
    Combi, Jorge A.
    Gancio, Guillermo
    Garcia, Federico
    Gutierrez, Eduardo M.
    Hauscarriaga, Fernando
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 509 (04) : 5790 - 5808
  • [29] Vela pulsar: single pulses analysis with machine learning techniques
    Lousto, Carlos O.
    Missel, Ryan
    Prajapati, Harshkumar
    Sosa Fiscella, Valentina
    Armengol, Federico G. Lopez
    Gyawali, Prashnna Kumar
    Wang, Linwei
    Cahill, Nathan D.
    Combi, Luciano
    del Palacio, Santiago
    Combi, Jorge A.
    Gancio, Guillermo
    Garcia, Federico
    Gutierrez, Eduardo M.
    Hauscarriaga, Fernando
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 509 (04) : 5790 - 5808
  • [30] Advanced Machine Learning Techniques for Bioinformatics
    Zou, Quan
    Liu, Qi
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2019, 16 (04) : 1182 - 1183