Rapamycin treatment augments motor neuron degeneration in SOD1G93A mouse model of amyotrophic lateral sclerosis

被引:306
|
作者
Zhang, Xiaojie [1 ]
Li, Liang [1 ]
Chen, Sheng [2 ]
Yang, Dehua [1 ]
Wang, Yi [1 ]
Zhang, Xin [2 ]
Wang, Zheng [2 ]
Le, Weidong [1 ,3 ]
机构
[1] Chinese Acad Sci, Key Lab Stem Cell Biol, Inst Hlth Sci, Shanghai Inst Biol Sci, Beijing 100864, Peoples R China
[2] Jiao Tong Univ, Sch Med, Inst Neurol, Ruijin Hosp, Shanghai 200030, Peoples R China
[3] Baylor Coll Med, Dept Neurol, Houston, TX 77030 USA
关键词
ALS; motor neuron degeneration; protein aggregation; autophagy; apoptosis; TRANSGENIC MICE; DISEASE PROGRESSION; MUTANT MICE; CELL-DEATH; LIFE-SPAN; AUTOPHAGY; DEGRADATION; ALS; ROLES; NEURODEGENERATION;
D O I
10.4161/auto.7.4.14541
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Aberrant protein misfolding may contribute to the pathogenesis of amyotrophic lateral sclerosis (ALS) but the detailed mechanisms are largely unknown. Our previous study has shown that autophagy is altered in the mouse model of ALS. In the present study, we systematically investigated the correlation of the autophagic alteration with the motor neurons (MNs) degeneration in the ALS mice. We have demonstrated that the autophagic protein marker LC3-II is markedly and specifically increased in the spinal cord MNs of the ALS mice. Electron microscopy and immunochemistry studies have shown that autophagic vacuoles are significantly accumulated in the dystrophic axons of spinal cord MNs of the ALS mice. All these changes in the ALS mice appear at the age of 90 d when the ALS mice display modest clinical symptoms; and they become prominent at the age of 120 d. The clinical symptoms are correlated with the progression of MNs degeneration. Moreover, we have found that p62/SQSTM1 is accumulated progressively in the spinal cord, indicating that the possibility of impaired autophagic flux in the SOD1(G93A) mice. Furthermore, to our surprise, we have found that treatment with autophagy enhancer rapamycin accelerates the MNs degeneration, shortens the life span of the ALS mice, and has no obvious effects on the accumulation of SOD1 aggregates. In addition, we have demonstrated that rapamycin treatment in the ALS mice causes more severe mitochondrial impairment, higher Bax levels and greater caspase-3 activation. These findings suggest that selective degeneration of MNs is associated with the impairment of the autophagy pathway and that rapamycin treatment may exacerbate the pathological processing through apoptosis and other mechanisms in the ALS mice.
引用
收藏
页码:412 / 425
页数:14
相关论文
共 50 条
  • [21] Accumulation of misfolded SOD1 outlines distinct patterns of motor neuron pathology and death during disease progression in a SOD1G93A mouse model of amyotrophic lateral sclerosis
    Salvany, Sara
    Casanovas, Anna
    Piedrafita, Lidia
    Gras, Silvia
    Caldero, Jordi
    Esquerda, Josep E.
    BRAIN PATHOLOGY, 2022, 32 (06)
  • [22] Calpastatin reduces toxicity of SOD1G93A in a culture model of amyotrophic lateral sclerosis
    Tradewell, Miranda L.
    Durham, Heather D.
    NEUROREPORT, 2010, 21 (15) : 976 - 979
  • [23] Androgen receptor antagonism accelerates disease onset in the SOD1G93A mouse model of amyotrophic lateral sclerosis
    McLeod, Victoria M.
    Lau, Chew L.
    Chiam, Mathew D. F.
    Rupasinghe, Thusitha W.
    Roessner, Ute
    Djouma, Elvan
    Boon, Wah C.
    Turner, Bradley J.
    BRITISH JOURNAL OF PHARMACOLOGY, 2019, 176 (13) : 2111 - 2130
  • [24] Neuroinflammatory correlates of motor neuron dysfunction in the G93A-SOD1 mutant mouse model of familial amyotrophic lateral sclerosis
    Hensley, K
    Mou, SY
    Pye, Q
    Stewart, C
    West, M
    Williamson, K
    FREE RADICAL BIOLOGY AND MEDICINE, 2001, 31 : S46 - S46
  • [25] Plasma neurofilament levels as a biomarker of disease progression in the SOD1G93A mouse model of amyotrophic lateral sclerosis
    Gnanapavan, S.
    Kalmar, B.
    Keir, G.
    Petzold, A.
    Giovanonni, G.
    Greensmith, L.
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2008, 79 (03): : 358 - 358
  • [26] Retinal Ganglion Cell Loss and Microglial Activation in a SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis
    Rojas, Pilar
    Ramirez, Ana I.
    Cadena, Manuel
    Fernandez-Albarral, Jose A.
    Salobrar-Garcia, Elena
    Lopez-Cuenca, Ines
    Santos-Garcia, Irene
    de Lago, Eva
    Urcelay-Segura, Jose L.
    Ramirez, Jose M.
    de Hoz, Rosa
    Salazar, Juan J.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (04) : 1 - 20
  • [27] Transcranial Focused Ultrasound Modifies Disease Progression in SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis
    Hong, Zhongqiu
    Yi, Shasha
    Deng, Miaoqin
    Zhong, Yongsheng
    Zhao, Yun
    Li, Lili
    Zhou, Hui
    Xiao, Yang
    Hu, Xiquan
    Niu, Lili
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2025, 72 (02) : 191 - 201
  • [28] Amyloid precursor protein (APP) contributes to pathology in the SOD1G93A mouse model of amyotrophic lateral sclerosis
    Bryson, J. Barney
    Hobbs, Carl
    Parsons, Michael J.
    Bosch, Karen D.
    Pandraud, Amelie
    Walsh, Frank S.
    Doherty, Patrick
    Greensmith, Linda
    HUMAN MOLECULAR GENETICS, 2012, 21 (17) : 3871 - 3882
  • [29] Cromolyn sodium delays disease onset and is neuroprotective in the SOD1G93A Mouse Model of amyotrophic lateral sclerosis
    Eric J. Granucci
    Ana Griciuc
    Kaly A. Mueller
    Alexandra N. Mills
    Hoang Le
    Amanda M. Dios
    Danielle McGinty
    Joao Pereira
    David Elmaleh
    James D. Berry
    Sabrina Paganoni
    Merit E. Cudkowicz
    Rudolph E. Tanzi
    Ghazaleh Sadri-Vakili
    Scientific Reports, 9
  • [30] Cromolyn sodium delays disease onset and is neuroprotective in the SOD1G93A Mouse Model of amyotrophic lateral sclerosis
    Granucci, Eric J.
    Griciuc, Ana
    Mueller, Kaly A.
    Mills, Alexandra N.
    Le, Hoang
    Dios, Amanda M.
    McGinty, Danielle
    Pereira, Joao
    Elmaleh, David
    Berry, James D.
    Paganoni, Sabrina
    Cudkowicz, Merit E.
    Tanzi, Rudolph E.
    Sadri-Vakili, Ghazaleh
    SCIENTIFIC REPORTS, 2019, 9 (1)