DEEP RELU NETWORKS OVERCOME THE CURSE OF DIMENSIONALITY FOR GENERALIZED BANDLIMITED FUNCTIONS

被引:17
|
作者
Montanelli, Hadrien [1 ]
Yang, Haizhao [2 ]
Du, Qiang [3 ]
机构
[1] Ecole Polytech, Ctr Math Appl, Palaiseau, France
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[3] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2021年 / 39卷 / 06期
关键词
Machine learning; Deep ReLU networks; Curse of dimensionality; Approxima-tion theory; Bandlimited functions; Chebyshev polynomials; ERROR-BOUNDS; OPTIMAL APPROXIMATION; SUPERPOSITION; SMOOTH;
D O I
10.4208/jcm.2007-m2019-0239
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a theorem concerning the approximation of generalized bandlimited multivariate functions by deep ReLU networks for which the curse of the dimensionality is overcome. Our theorem is based on a result by Maurey and on the ability of deep ReLU networks to approximate Chebyshev polynomials and analytic functions efficiently.
引用
收藏
页码:801 / 815
页数:15
相关论文
共 50 条