DEEP NEURAL NETWORKS WITH RELU-SINE-EXPONENTIAL ACTIVATIONS BREAK CURSE OF DIMENSIONALITY IN APPROXIMATION ON HOLDER CLASS

被引:1
|
作者
Jiao, Yuling [1 ,2 ]
Lai, Yanming [3 ]
Lu, Xiliang [1 ,2 ]
Wang, Fengru [3 ]
Yang, Jerry zhijian [1 ,2 ]
Yang, Yuanyuan [3 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Hubei Key Lab Computat Sci, Wuhan 430072, Peoples R China
[3] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
美国国家科学基金会;
关键词
deep neural network; curse of dimensionality; approximation; Holder continuous function; ERROR-BOUNDS;
D O I
10.1137/21M144431X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct neural networks with ReLU, sine, and 2xas activationfunctions. For a general continuousfdefined on [0,1]dwith continuity modulus\omega f(\cdot ), we constructReLU-sine-2xnetworks that enjoy an approximation rate\scrO (\omega f(\surd d)\cdot 2 - M+\omega f(\surd dN)), whereM,N\in \BbbN +are the hyperparameters related to widths of the networks. As a consequence, we can constructReLU-sine-2xnetwork with the depth 6 and width max\{ 2d\lceil log2(\surd d(3\mu \epsilon )1/\alpha )\rceil ,. .2\lceil log23\mu d\alpha /22\epsilon \rceil + 2\} that approximatesf\in \scrH \alpha \mu ([0,1]d) within a given tolerance\epsilon >0 measured in theLpnorm withp\in [1,\infty ), where\scrH \alpha \mu ([0,1]d) denotes the H\"older continuous function class defined on [0,1]dwithorder\alpha \in (0,1] and constant\mu >0. Therefore, the ReLU-sine-2xnetworks overcome the curseof dimensionality in an approximation on\scrH \alpha \mu ([0,1]d). In addition to its super expressive power,functions implemented by ReLU-sine-2xnetworks are (generalized) differentiable, enabling us toapply stochastic gradient descent to train.
引用
收藏
页码:3635 / 3649
页数:15
相关论文
共 19 条