The mechanism of anomalous hardening in transition-metal monoborides

被引:24
|
作者
Liang, Yongcheng [1 ,2 ]
Gao, Zhenbang [2 ]
Qin, Ping [2 ]
Gao, Li [2 ]
Tang, Chun [3 ,4 ,5 ]
机构
[1] Donghua Univ, Coll Sci, Shanghai 201620, Peoples R China
[2] Shanghai Ocean Univ, Coll Engn Sci & Technol, Shanghai 201306, Peoples R China
[3] Jiangsu Univ, Fac Civil Engn & Mech, Zhenjiang, Jiangsu 212013, Peoples R China
[4] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA
[5] Univ Nevada, High Pressure Sci & Engn Ctr, Las Vegas, NV 89154 USA
基金
中国国家自然科学基金;
关键词
CUBIC BORON-NITRIDE; HARDNESS ENHANCEMENT; SUPERHARD MATERIALS; PRESSURE; CARBIDES; STABILITY; DIBORIDE; CRYSTAL; WB3;
D O I
10.1039/c7nr02377d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The quest for novel nanomaterials with unusual functionalities continues to be a central challenge to modern nanoscience. Here we report a surprisingly anomalous hardening behavior exhibited by a class of transition-metal monoborides (TMB). Most remarkable is the occurrence of the intrinsic hardness maximum at the valence-electron concentration (VEC) of about 8 electrons per formula unit (e per f. u.); both lower and higher VECs lead to the decrease of hardness, contrasting with the expected positive correlation between hardness and VEC. Such an unexpected phenomenon originates from the presence of two sorts of bands near the Fermi level that respond oppositely to the movement of dislocations within the metal bilayer. Furthermore, we demonstrate that the hardness is closely related to the formation energy for TMB, which justifies the importance of the thermodynamic stability in designing superhard materials. Our findings not only elucidate the unique mechanism responsible for unusual atom-scale hardening but also open a new avenue towards designing novel multifunctional nanomaterials with the coexistence of high hardness and excellent electrical conductivity.
引用
收藏
页码:9112 / 9118
页数:7
相关论文
共 50 条
  • [21] Mechanism of Transition-Metal Nanoparticle Catalytic Graphene Cutting
    Ma, Liang
    Wang, Jinlan
    Yip, Joanne
    Ding, Feng
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (07): : 1192 - 1197
  • [22] MECHANISM OF HYDRODIALKYLATION OF ALKYLAROMATIC HYDROCARBONS ON TRANSITION-METAL HYDRIDES
    LUNIN, VV
    DEINEKA, VI
    PLATE, AF
    DOKLADY AKADEMII NAUK SSSR, 1976, 229 (02): : 353 - 356
  • [23] ON THE MECHANISM OF COHERENT DIHYDROGEN TUNNELING IN TRANSITION-METAL TRIHYDRIDES
    LIMBACH, HH
    SCHERER, G
    MAURER, M
    CHAUDRET, B
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1992, 31 (10): : 1369 - 1372
  • [24] Electronic mechanism of hardness enhancement in transition-metal carbonitrides
    Jhi, SH
    Ihm, J
    Louie, SG
    Cohen, ML
    NATURE, 1999, 399 (6732) : 132 - 134
  • [25] MECHANISM OF THE EXCHANGE COUPLING IN TRANSITION-METAL MAGNETIC MULTILAYERS
    CHUDNOVSKY, EM
    EUROPHYSICS LETTERS, 1995, 30 (03): : 175 - 180
  • [26] Mechanism for bipolar resistive switching in transition-metal oxides
    Rozenberg, M. J.
    Sanchez, M. J.
    Weht, R.
    Acha, C.
    Gomez-Marlasca, F.
    Levy, P.
    PHYSICAL REVIEW B, 2010, 81 (11):
  • [27] A mechanism for transition-metal nanoparticle self-assembly
    Besson, C
    Finney, EE
    Finke, RG
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (22) : 8179 - 8184
  • [28] MECHANISM OF PRIMARY REACTIONS OF TRANSITION-METAL COMPLEXES WITH ALKANES
    SHESTAKOV, AF
    SHILOV, AE
    KHIMICHESKAYA FIZIKA, 1984, 3 (11): : 1591 - 1603
  • [29] A mechanism for transition-metal nanoparticle self-assembly
    Besson, Claire
    Finney, Eric E.
    Finke, Richard G.
    Journal of the American Chemical Society, 2005, 127 (22): : 8179 - 8184
  • [30] RECONSTRUCTION MECHANISM OF FCC TRANSITION-METAL (001) SURFACES
    FIORENTINI, V
    METHFESSEL, M
    SCHEFFLER, M
    PHYSICAL REVIEW LETTERS, 1993, 71 (07) : 1051 - 1054