Photophysical properties and fluorescence lifetime imaging of exfoliated near-infrared fluorescent silicate nanosheets

被引:14
|
作者
Selvaggio, Gabriele [1 ,2 ]
Weitzel, Milan [2 ]
Oleksiievets, Nazar [3 ]
Oswald, Tabea A. [4 ]
Nissler, Robert [1 ,2 ]
Mey, Ingo [4 ]
Karius, Volker [5 ]
Enderlein, Joerg [3 ,6 ]
Tsukanov, Roman [3 ]
Kruss, Sebastian [1 ,2 ,7 ]
机构
[1] Bochum Univ, Phys Chem 2, D-44801 Bochum, Germany
[2] Univ Gottingen, Inst Phys Chem, D-37077 Gottingen, Germany
[3] Univ Gottingen, Inst Phys 3, D-37077 Gottingen, Germany
[4] Univ Gottingen, Inst Organ & Biomol Chem, D-37077 Gottingen, Germany
[5] Univ Gottingen, Geosci Ctr, Dept Sedimentol & Envimnmental Geol, D-37077 Gottingen, Germany
[6] Univ Gottingen, Cluster Excellence Multiscale Bioimaging Mol Mach, Gottingen, Germany
[7] Fraunhofer Inst Microelect Circuits & Syst, D-47057 Duisburg, Germany
来源
NANOSCALE ADVANCES | 2021年 / 3卷 / 15期
关键词
EGYPTIAN BLUE; 2-DIMENSIONAL MATERIALS; CARBON NANOTUBES; PIGMENTS; WINDOW;
D O I
10.1039/d1na00238d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The layered silicates Egyptian Blue (CaCuSi4O10, EB), Han Blue (BaCuSi4O10, HB) and Han Purple (BaCuSi2O6, HP) emit as bulk materials bright and stable fluorescence in the near-infrared (NIR), which is of high interest for (bio)photonics due to minimal scattering, absorption and phototoxicity in this spectral range. So far the optical properties of nanosheets (NS) of these silicates are poorly understood. Here, we exfoliate them into monodisperse nanosheets, report their physicochemical properties and use them for (bio)photonics. The approach uses ball milling followed by tip sonication and centrifugation steps to exfoliate the silicates into NS with lateral size and thickness down to approximate to 16-27 nm and 1-4 nm, respectively. They emit at approximate to 927 nm (EB-NS), 953 nm (HB-NS) and 924 nm (HP-NS), and single NS can be imaged in the NIR. The fluorescence lifetimes decrease from approximate to 30-100 mu s (bulk) to 17 mu s (EB-NS), 8 mu s (HB-NS) and 7 mu s (HP-NS), thus enabling lifetime-encoded multicolor imaging both on the microscopic and the macroscopic scale. Finally, remote imaging through tissue phantoms reveals the potential for bioimaging. In summary, we report a procedure to gain monodisperse NIR fluorescent silicate nanosheets, determine their size-dependent photophysical properties and showcase the potential for NIR photonics.
引用
收藏
页码:4541 / 4553
页数:13
相关论文
共 50 条
  • [21] A near-infrared fluorescence-on fluorescent probe for formaldehyde imaging in Arabidopsis thaliana
    Min, Zhangtao
    Zhang, Mai
    Sun, Haijun
    Xu, Li
    Wang, Xiaoqing
    Liu, Zhipeng
    DYES AND PIGMENTS, 2023, 218
  • [22] Near-Infrared Fluorescent NanoGUMBOS for Biomedical Imaging
    Bwambok, David K.
    El-Zahab, Bilal
    Challa, Santhosh K.
    Li, Min
    Chandler, Lin
    Baker, Gary A.
    Warner, Isiah M.
    ACS NANO, 2009, 3 (12) : 3854 - 3860
  • [23] Interactions of Indocyanine Green and Lipid in Enhancing Near-Infrared Fluorescence Properties: The Basis for Near-Infrared Imaging in Vivo
    Kraft, John C.
    Ho, Rodney J. Y.
    BIOCHEMISTRY, 2014, 53 (08) : 1275 - 1283
  • [24] Near-Infrared Fluorescent Imaging in Pancreatic Cancer
    不详
    JOURNAL OF NUCLEAR MEDICINE, 2008, 49 (10) : 36N - 36N
  • [25] Near-infrared fluorescent imaging of tumor apoptosis
    Petrovsky, A
    Schellenberger, E
    Josephson, L
    Weissleder, R
    Bogdanov, A
    CANCER RESEARCH, 2003, 63 (08) : 1936 - 1942
  • [26] Nanomedicines for Near-Infrared Fluorescent Lifetime-Based Bioimaging
    Lian, Xianhui
    Wei, Ming-Yuan
    Ma, Qiang
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2019, 7
  • [27] Near-infrared fluorescence optical imaging and tomography
    Gurfinkel, M
    Ke, S
    Wen, XX
    Li, C
    Sevick-Muraca, EM
    DISEASE MARKERS, 2003, 19 (2-3) : 107 - 121
  • [28] Discovery in translation: near-infrared fluorescence imaging
    Sevick-Muraca, Eva M.
    OPTICAL BIOPSY X, 2012, 8220
  • [29] Lymphatic imaging in humans with near-infrared fluorescence
    Rasmussen, John C.
    Tan, I-Chih
    Marshall, Milton V.
    Fife, Caroline E.
    Sevick-Muraca, Eva M.
    CURRENT OPINION IN BIOTECHNOLOGY, 2009, 20 (01) : 74 - 82
  • [30] Near-Infrared Fluorescence Lymphatic Imaging in Lymphangiomatosis
    Rasmussen, John C.
    Fife, Caroline E.
    Sevick-Muraca, Eva M.
    LYMPHATIC RESEARCH AND BIOLOGY, 2015, 13 (03) : 195 - 201