On normalized Laplacian spectrum of zero di-visor graphs of commutative ring Zn

被引:13
|
作者
Pirzada, S. [1 ]
Rather, Bilal A. [1 ]
Chishti, T. A. [1 ]
Samee, U. [1 ]
机构
[1] Univ Kashmir, Dept Math, Srinagar, Kashmir, India
关键词
normalized Laplacian matrix; normalized Laplacian spectrum; zero divisor graph; DIVISOR GRAPH; EIGENVALUES;
D O I
10.5614/ejgta.2021.9.2.7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a finite commutative ring Z(n) with identity 1 not equal 0, the zero divisor graph Gamma(Z(n)) is a simple connected graph having vertex set as the set of non-zero zero divisors, where two vertices x and y are adjacent if and only if xy = 0. We find the normalized Laplacian spectrum of the zero divisor graphs Gamma (Z(n))for various values of n and characterize n for which Gamma (Z(n)) is normalized Laplacian integral. We also obtain bounds for the sum of graph invariant S-beta* (G)-the sum of the beta-th power of the non-zero normalized Laplacian eigenvalues of Gamma (Z(n)).
引用
收藏
页码:331 / 345
页数:15
相关论文
共 43 条