Random Dynamical Systems Generated by Two Allee Maps

被引:0
|
作者
Kovac, Jozef [1 ]
Jankova, Katarina [1 ]
机构
[1] Comenius Univ, Fac Math Phys & Informat, Dept Appl Math & Stat, Bratislava 84248, Slovakia
来源
关键词
Random dynamical systems; Allee maps; Markov process; BEVERTON-HOLT EQUATION; DIFFERENCE-EQUATIONS; POPULATION BIOLOGY; EXTINCTION; MODELS;
D O I
10.1142/S0218127417501176
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study random dynamical systems generated by two Allee maps. Two models are considered - with and without small random perturbations. It is shown that the behavior of the systems is very similar to the behavior of the deterministic system if we use strictly increasing Allee maps. However, in the case of unimodal Allee maps, the behavior can dramatically change irrespective of the initial conditions.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] What maps can admit two-sided symbolic dynamical systems?
    Mai, JH
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (04): : 1485 - 1491
  • [22] Random dynamical systems: a review
    Bhattacharya, R
    Majumdar, M
    ECONOMIC THEORY, 2003, 23 (01) : 13 - 38
  • [23] DYNAMICS OF RANDOM DYNAMICAL SYSTEMS
    Azjargal, Enkhbayar
    Choinkhor, Zorigt
    Tsegmid, Nyamdavaa
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (04) : 1131 - 1139
  • [24] Random dynamical systems with jumps
    Horbacz, K
    JOURNAL OF APPLIED PROBABILITY, 2004, 41 (03) : 890 - 910
  • [25] Random dynamical systems in economics
    Majumdar, M
    Probability and Partial Differential Equations in Modern Applied Mathematics, 2005, 140 : 181 - 195
  • [26] Shadowing in random dynamical systems
    He, LF
    Zhu, YJ
    Zheng, HW
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 12 (02) : 355 - 362
  • [27] Sublinear random dynamical systems
    不详
    MONOTONE RANDOM SYSTEMS - THEORY AND APPLICATIONS, 2002, 1779 : 113 - 141
  • [28] Random Dynamical Systems with Inputs
    de Freitas, Michael Marcondes
    Sontag, Eduardo D.
    NONAUTONOMOUS DYNAMICAL SYSTEMS IN THE LIFE SCIENCES, 2013, 2102 : 41 - 87
  • [29] Random cyclic dynamical systems
    Adamaszek, Michal
    Adams, Henry
    Motta, Francis
    ADVANCES IN APPLIED MATHEMATICS, 2017, 83 : 1 - 23
  • [30] RECURRENCE FOR RANDOM DYNAMICAL SYSTEMS
    Marie, Philippe
    Rousseau, Jerome
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 30 (01) : 1 - 16