Thermodynamic Aspects of Cathode Coatings for Lithium-Ion Batteries

被引:108
|
作者
Aykol, Muratahan [1 ]
Kirklin, Scott [1 ]
Wolverton, C. [1 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
关键词
INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AB-INITIO; ELECTROCHEMICAL PERFORMANCE; LICOO2; CATHODE; 1ST-PRINCIPLES PREDICTION; LIPF6-BASED ELECTROLYTES; LINI0.8CO0.2O2; CATHODES; COBALT DISSOLUTION; SPINEL LIMN2O4;
D O I
10.1002/aenm.201400690
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal oxide cathode coatings are capable of scavenging the hydrofluoric acid (HF) (present in LiPF6-based electrolytes) and improving the electrochemical performance of Li-ion batteries. Here, a first-principles thermodynamic framework is introduced for designing cathode coatings that consists of four elements: i) HF-scavenging enthalpies, ii) volumetric and iii) gravimetric HF-scavenging capacities of the oxides, and iv) cyclable Li loss into coating components. 81 HF-scavenging reactions involving binary s-, p- and d-block metal oxides and fluorides are enumerated and these materials are screened to find promising coatings based on attributes (i-iv). The screen successfully produces known effective coating materials (e.g., Al2O3 and MgO), providing a validation of our framework. Using this design strategy, promising coating materials, such as trivalent oxides of d-block transition metals Sc, Ti, V, Cr, Mn and Y, are predicted. Finally, a new protection mechanism that successful coating materials could provide by scavenging the wide bandgap and low Li ion conductivity LiF precipitates from the cathode surfaces is suggested.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Understanding kinetic and thermodynamic properties of blended cathode materials for lithium-ion batteries
    Liebmann, Tobias
    Heubner, Christian
    Schneider, Michael
    Michaelis, Alexander
    MATERIALS TODAY ENERGY, 2021, 22
  • [2] The redox aspects of lithium-ion batteries
    Peljo, Pekka
    Villevieille, Claire
    Girault, Hubert H.
    ENERGY & ENVIRONMENTAL SCIENCE, 2025, 18 (04) : 1658 - 1672
  • [3] Advanced cathode materials for lithium-ion batteries
    Chen, Zonghai
    Lee, Dong-Ju
    Sun, Yang-Kook
    Amine, Khalil
    MRS BULLETIN, 2011, 36 (07) : 498 - 505
  • [4] Advanced cathode materials for lithium-ion batteries
    Zonghai Chen
    Dong-Ju Lee
    Yang-Kook Sun
    Khalil Amine
    MRS Bulletin, 2011, 36 : 498 - 505
  • [5] Lithium transport through lithium-ion battery cathode coatings
    Xu, Shenzhen
    Jacobs, Ryan M.
    Nguyen, Ha M.
    Hao, Shiqiang
    Mahanthappa, Mahesh
    Wolverton, Chris
    Morgan, Dane
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (33) : 17248 - 17272
  • [6] Lithium-Ion Conductive Coatings for Nickel-Rich Cathodes for Lithium-Ion Batteries
    Shao, Yijia
    Xu, Jia
    Amardeep, Amardeep
    Xia, Yakang
    Meng, Xiangbo
    Liu, Jian
    Liao, Shijun
    SMALL METHODS, 2024, 8 (12)
  • [7] A Thermodynamic Reassessment of Lithium-Ion Battery Cathode Calorimetry
    Shurtz, Randy C.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (14)
  • [8] Review of Graphene in Cathode Materials for Lithium-Ion Batteries
    Chen, Xueye
    Tian, Yue
    ENERGY & FUELS, 2021, 35 (05) : 3572 - 3580
  • [9] Cathode healing methods for recycling of lithium-ion batteries
    Sloop, Steve E.
    Crandon, Lauren
    Allen, Marshall
    Lerner, Michael M.
    Zhang, Hanyang
    Sirisaksoontorn, Weekit
    Gaines, Linda
    Kim, Joon
    Lee, Myongjai
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2019, 22
  • [10] Mechanical properties of cathode materials for lithium-ion batteries
    Stallard, Joe C.
    Wheatcroft, Laura
    Booth, Samuel G.
    Boston, Rebecca
    Corr, Serena A.
    De Volder, Michael F. L.
    Inkson, Beverley J.
    Fleck, Norman A.
    JOULE, 2022, 6 (05) : 984 - 1007