Grids and universal computations on one-dimensional cellular automata

被引:1
|
作者
Yunes, Jean-Baptiste [1 ]
机构
[1] Univ Paris Diderot, CNRS, LIAFA, UMR 7089, F-75205 Paris 13, France
关键词
Cellular automata; Simulation; Universality; Programmation; TIME;
D O I
10.1007/s11047-012-9312-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article shows how universal computations can be achieved on one-dimensional cellular automata. We are interested in intrinsic universality: we want a CA in which any other CA can be represented and simulated with no intermediate coding relevant to another computation model. We first abstract the space-time diagram in favor of the dependency graph. Then we show how such a dependency graph (via treillis automata) can be realized by what is called a grid, leading to a simple uniform simulation. Finally, we exhibit a very simple universal brick that can be used in grids to obtain an intrinsic universal CA.
引用
收藏
页码:303 / 309
页数:7
相关论文
共 50 条
  • [31] Boundary Growth in One-Dimensional Cellular Automata
    Brummitt, Charles D.
    Rowland, Eric
    [J]. COMPLEX SYSTEMS, 2012, 21 (02): : 85 - 116
  • [32] LYAPUNOV EXPONENTS FOR ONE-DIMENSIONAL CELLULAR AUTOMATA
    SHERESHEVSKY, MA
    [J]. JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (01) : 1 - 8
  • [33] Model Checking One-Dimensional Cellular Automata
    Sutner, Klaus
    [J]. JOURNAL OF CELLULAR AUTOMATA, 2009, 4 (03) : 213 - 224
  • [34] ONE-DIMENSIONAL CELLULAR AUTOMATA AS ARITHMETIC RECURSIONS
    URIAS, J
    [J]. PHYSICA D, 1989, 36 (1-2): : 109 - 110
  • [35] From One-dimensional to Two-dimensional Cellular Automata
    Dennunzio, Alberto
    [J]. FUNDAMENTA INFORMATICAE, 2012, 115 (01) : 87 - 105
  • [36] A One-Dimensional Physically Universal Cellular Automaton
    Salo, Ville
    Torma, Ilkka
    [J]. UNVEILING DYNAMICS AND COMPLEXITY, CIE 2017, 2017, 10307 : 375 - 386
  • [37] A one-dimensional physically universal cellular automaton
    Salo, Ville
    Törmä, Ilkka
    [J]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, 10307 LNCS : 375 - 386
  • [38] Entanglement dynamics in one-dimensional quantum cellular automata
    Brennen, GK
    Williams, JE
    [J]. PHYSICAL REVIEW A, 2003, 68 (04): : 1 - 042311
  • [39] The intrinsic universality problem of one-dimensional cellular automata
    Ollinger, N
    [J]. STACS 2003, PROCEEDINGS, 2003, 2607 : 632 - 641
  • [40] Symmetry and Entropy of One-Dimensional Legal Cellular Automata
    Yamasaki, Kazuhito
    Nanjo, Kazuyoshi Z.
    Chiba, Satoshi
    [J]. COMPLEX SYSTEMS, 2012, 20 (04): : 351 - 361