Pointwise Convergence along non-tangential direction for the Schrodinger equation with Complex Time

被引:3
|
作者
Yuan, Jiye [1 ]
Zhao, Tengfei [2 ]
Zheng, Jiqiang [3 ]
机构
[1] China Acad Engn Phys, Grad Sch, POB 2101, Beijing 100088, Peoples R China
[2] Beijing Computat Sci Res Ctr, 10 West Dongbeiwang Rd, Beijing 100193, Peoples R China
[3] Inst Appl Phys & Computat Math, POB 8009, Beijing 100088, Peoples R China
来源
REVISTA MATEMATICA COMPLUTENSE | 2021年 / 34卷 / 02期
基金
中国国家自然科学基金;
关键词
Pointwise convergence; Fractional Schrodinger operator; Maximal estimate; MAXIMAL OPERATORS;
D O I
10.1007/s13163-020-00364-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the pointwise convergence to the initial data in a cone region for the fractional Schrodinger operator P-a,gamma(t) with complex time. By stationary phase analysis, we establish the maximal estimate for P-a,gamma(t) in a cone region. As a consequence of the maximal estimate, the pointwise convergence holds through a standard argument. Our results extend those obtained by Cho-Lee-Vargas (J Fourier Anal Appl 18:972-994, 2012) and Shiraki (arXiv:1903.02356v1) from the real value time to the complex value time.
引用
收藏
页码:389 / 407
页数:19
相关论文
共 50 条
  • [41] The Non-linear Schrodinger Equation and the Conformal Properties of Non-relativistic Space-Time
    Horvathy, P. A.
    Yera, J. -C.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (11) : 3139 - 3146
  • [42] The time-fractional Schrodinger equation in the context of non-Markovian dynamics with dissipation
    Zu, Chuanjin
    Yu, Xiangyang
    JOURNAL OF CHEMICAL PHYSICS, 2025, 162 (07):
  • [43] Non-polynomial spline method for the time-fractional nonlinear Schrodinger equation
    Li, Mingzhu
    Ding, Xiaohua
    Xu, Qiang
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [44] Quintic non-polynomial spline for time-fractional nonlinear Schrodinger equation
    Ding, Qinxu
    Wong, Patricia J. Y.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [45] Non-polynomial Spline Method for Time-fractional Nonlinear Schrodinger Equation
    Ding, Qinxu
    Wong, Patricia J. Y.
    2018 15TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2018, : 913 - 918
  • [46] Convergence of a finite element scheme for the two-dimensional time-dependent Schrodinger equation in a long strip
    Jin, Jicheng
    Wu, Xiaonan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (03) : 777 - 793
  • [47] Large Time Convergence of the Non-homogeneous Goldstein-Taylor Equation
    Anton Arnold
    Amit Einav
    Beatrice Signorello
    Tobias Wöhrer
    Journal of Statistical Physics, 2021, 182
  • [48] Large Time Convergence of the Non-homogeneous Goldstein-Taylor Equation
    Arnold, Anton
    Einav, Amit
    Signorello, Beatrice
    Woehrer, Tobias
    JOURNAL OF STATISTICAL PHYSICS, 2021, 182 (02)
  • [49] SOLVING THE TIME-DEPENDENT SCHRODINGER-EQUATION USING COMPLEX-COORDINATE CONTOURS
    MCCURDY, CW
    STROUD, CK
    WISINSKI, MK
    PHYSICAL REVIEW A, 1991, 43 (11): : 5980 - 5990
  • [50] NON-LINEARIZATION OF FREE SCHRODINGER EQUATION AND PSEUDO-MORPHOLOGICAL COMPLEX DIFFUSION OPERATORS
    Angulo, Jesus
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 73 - 76