Evolution of magnetic properties in the normal spinel solid solution Mg1-xCuxCr2O4

被引:19
|
作者
Kemei, Moureen C. [1 ]
Moffitt, Stephanie L. [1 ]
Shoemaker, Daniel P. [2 ]
Seshadri, Ram [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
[2] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
CRYSTAL; MGCR2O4; CR2O3;
D O I
10.1088/0953-8984/24/4/046003
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We examine the evolution of magnetic properties in the normal spinel oxides Mg1-xCuxCr2O4 using magnetization and heat capacity measurements. The end-member compounds of the solid solution series have been studied in some detail because of their very interesting magnetic behavior. MgCr2O4 is a highly frustrated system that undergoes a first-order structural transition at its antiferromagnetic ordering temperature. CuCr2O4 is tetragonal at room temperature as a result of Jahn-Teller active tetrahedral Cu2+ and undergoes a magnetic transition at 135 K. Substitution of magnetic cations for diamagnetic Mg2+ on the tetrahedral A site in the compositional series Mg1-xCuxCr2O4 dramatically affects magnetic behavior. In the composition range 0 <= x <= approximate to 0.3, the compounds are antiferromagnetic. A sharp peak observed at 12.5 K in the heat capacity of MgCr2O4 corresponding to a magnetically driven first-order structural transition is suppressed even for small x. Uncompensated magnetism-with open magnetization loops-develops for samples in the x range approximate to 0.43 <= x <= 1. Multiple magnetic ordering temperatures and large coercive fields emerge in the intermediate composition range 0 : 43 <= x <= 0.47. The Neel temperature increases with increasing x across the series while the value of the Curie-Weiss (CW)-C-Theta decreases. A magnetic temperature-composition phase diagram of the solid solution series is presented.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Evolution of magnetic properties in the solid solution DyCo1-xNixC2
    Michor, H.
    Levytskyy, V.
    Schwarzboeck, F.
    Babizhetskyy, V.
    Kotur, B.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2015, 374 : 553 - 558
  • [32] Magnetic properties of the ZnFe2O4 spinel
    Schiessl, W
    Potzel, W
    Karzel, H
    Steiner, M
    Kalvius, GM
    Martin, A
    Krause, MK
    Halevy, I
    Gal, J
    Schafer, W
    Will, G
    Hillberg, M
    Wappling, R
    PHYSICAL REVIEW B, 1996, 53 (14) : 9143 - 9152
  • [33] Magnetic properties of the spinel SnCo2O4
    Sagredo, V
    Watts, B
    Wanklyn, B
    JOURNAL DE PHYSIQUE IV, 1997, 7 (C1): : 279 - 280
  • [34] Magnetic properties of the Fe2SiO4-Fe3O4 spinel solid solutions
    T. Yamanaka
    M. Okita
    Physics and Chemistry of Minerals, 2001, 28 : 102 - 109
  • [35] Magnetic properties of the Fe2SiO4-Fe3O4 spinel solid solutions
    Yamanaka, T
    Okita, M
    PHYSICS AND CHEMISTRY OF MINERALS, 2001, 28 (02) : 102 - 109
  • [36] Magnetic evolution of spinel Mn1-xZnxCr2O4 single crystals
    Lin, G. T.
    Luo, X.
    Pei, Q. L.
    Chen, F. C.
    Yang, C.
    Song, J. Y.
    Yin, L. H.
    Song, W. H.
    Sun, Y. P.
    RSC ADVANCES, 2016, 6 (62): : S6839 - S6844
  • [37] Magnetic phase evolution in the spinel compounds Zn1-xCoxCr2O4
    Melot, Brent C.
    Drewes, Jennifer E.
    Seshadri, Ram
    Stoudenmire, E. M.
    Ramirez, Arthur P.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (21)
  • [38] Magnetic properties of magnetic Co1-xMgxFe2O4 spinel by HTSE method
    Hamedoun, M.
    Benyoussef, A.
    Bousmina, M.
    PHYSICA B-CONDENSED MATTER, 2011, 406 (09) : 1633 - 1638
  • [39] SOLID-SOLUTION FORMATION, ELECTRICAL-PROPERTIES AND ZERO-RESISTANCE BEHAVIOR IN THE SPINEL SYSTEM MG2TIO4-MGTI2O4
    COGLE, TJ
    MATEUS, CAS
    BINKS, JH
    IRVINE, JTS
    JOURNAL OF MATERIALS CHEMISTRY, 1991, 1 (02) : 289 - 291
  • [40] Investigation on the microstructure and magnetic properties of Mg(Ga2-xFex)O4 spinel ferrites
    Niu, Xiaofei
    Liu, Chaocheng
    Zong, Bangfeng
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (02)