Fourth-order algorithms for solving the imaginary-time Gross-Pitaevskii equation in a rotating anisotropic trap

被引:50
|
作者
Chin, SA [1 ]
Krotscheck, E
机构
[1] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA
[2] Johannes Kepler Univ Linz, Inst Theoret Phys, A-4040 Linz, Austria
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 03期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.72.036705
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
By implementing the exact density matrix for the rotating anisotropic harmonic trap, we derive a class of very fast and accurate fourth-order algorithms for evolving the Gross-Pitaevskii equation in imaginary time. Such fourth-order algorithms are possible only with the use of forward, positive time step factorization schemes. These fourth-order algorithms converge at time-step sizes an order-of-magnitude larger than conventional second-order algorithms. Our use of time-dependent factorization schemes provides a systematic way of devising algorithms for solving this type of nonlinear equations.
引用
收藏
页数:9
相关论文
共 35 条