Fourth-order algorithms for solving the imaginary-time Gross-Pitaevskii equation in a rotating anisotropic trap

被引:50
|
作者
Chin, SA [1 ]
Krotscheck, E
机构
[1] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA
[2] Johannes Kepler Univ Linz, Inst Theoret Phys, A-4040 Linz, Austria
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 03期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.72.036705
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
By implementing the exact density matrix for the rotating anisotropic harmonic trap, we derive a class of very fast and accurate fourth-order algorithms for evolving the Gross-Pitaevskii equation in imaginary time. Such fourth-order algorithms are possible only with the use of forward, positive time step factorization schemes. These fourth-order algorithms converge at time-step sizes an order-of-magnitude larger than conventional second-order algorithms. Our use of time-dependent factorization schemes provides a systematic way of devising algorithms for solving this type of nonlinear equations.
引用
收藏
页数:9
相关论文
共 35 条
  • [1] Resolution of the Gross-Pitaevskii equation with the imaginary-time method on a Lagrange mesh
    Baye, D.
    Sparenberg, J. -M.
    PHYSICAL REVIEW E, 2010, 82 (05):
  • [2] CUDA programs for solving the time-dependent dipolar Gross-Pitaevskii equation in an anisotropic trap
    Loncar, Vladimir
    Balaz, Antun
    Boojevic, Aleksandar
    Skrbic, Srdjan
    Muruganandam, Paulsamy
    Adhikari, Sadhan K.
    COMPUTER PHYSICS COMMUNICATIONS, 2016, 200 : 406 - 410
  • [3] C programs for solving the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap
    Vudragovic, Dusan
    Vidanovic, Ivana
    Balaz, Antun
    Muruganandam, Paulsamy
    Adhikari, Sadhan K.
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (09) : 2021 - 2025
  • [4] OpenMP Fortran and C programs for solving the time-dependent Gross-Pitaevskii equation in an anisotropic trap
    Young-S., Luis E.
    Vudragovic, Dugan
    Muruganandam, Paulsamy
    Adhikari, Sadhan K.
    Balaz, Antun
    COMPUTER PHYSICS COMMUNICATIONS, 2016, 204 : 209 - 213
  • [5] Hybrid OpenMP/MPI programs for solving the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap
    Sataric, Bogdan
    Slavnic, Vladimir
    Belic, Aleksandar
    Balaz, Antun
    Muruganandam, Paulsamy
    Adhikari, Sadhan K.
    COMPUTER PHYSICS COMMUNICATIONS, 2016, 200 : 411 - 417
  • [6] Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap
    Muruganandam, P.
    Adhikari, S. K.
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (10) : 1888 - 1912
  • [7] Fortran and C programs for the time-dependent dipolar Gross-Pitaevskii equation in an anisotropic trap
    Kumar, R. Kishor
    Young-S, Luis E.
    Vudragovic, Dusan
    Balaz, Antun
    Muruganandam, Paulsamy
    Adhikari, S. K.
    COMPUTER PHYSICS COMMUNICATIONS, 2015, 195 : 117 - 128
  • [8] The fourth-order dispersion effect on the soliton waves and soliton stabilities for the cubic-quintic Gross-Pitaevskii equation
    Li, Li
    Yu, Fajun
    CHAOS SOLITONS & FRACTALS, 2024, 179
  • [9] Analytical Solutions to the Time-Independent Gross-Pitaevskii Equation with a Harmonic Trap
    Shi Yu-Ren
    Wang Guang-Hui
    Liu Cong-Bo
    Zhou Zhi-Gang
    Yang Hong-Juan
    CHINESE PHYSICS LETTERS, 2012, 29 (11)
  • [10] An analysis of Schwarz waveform relaxation domain decomposition methods for the imaginary-time linear Schrodinger and Gross-Pitaevskii equations
    Antoine, X.
    Lorin, E.
    NUMERISCHE MATHEMATIK, 2017, 137 (04) : 923 - 958