NORM INEQUALITIES OF DAVIDSON-POWER TYPE

被引:3
|
作者
Al-Natoor, Ahmad [1 ]
Audeh, Wasim [2 ]
Kittaneh, Fuad [3 ]
机构
[1] Isra Univ, Dept Math, Amman, Jordan
[2] Petra Univ, Dept Math, Amman, Jordan
[3] Univ Jordan, Dept Math, Amman, Jordan
来源
关键词
Concave function; positive semidefinite matrix; singular value; unitarily invariant norm; inequality;
D O I
10.7153/mia-2020-23-57
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A, B, and X be n x n complex matrices such that A and B are positive semidefinite. It is shown, among other inequalities, that parallel to AX + XB parallel to <= 1/2 max(parallel to A parallel to, parallel to XBX*parallel to) +1/2 max(parallel to X*AX parallel to, parallel to B parallel to) + parallel to A(1/2)XB(1/2)parallel to. This norm inequality extends an inequality of Kittaneh, which improves an earlier inequality of Davidson and Power.
引用
收藏
页码:689 / 697
页数:9
相关论文
共 50 条
  • [31] WEIGHTED NORM INEQUALITIES
    MUCKENHOUPT, B
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A179 - A180
  • [32] INEQUALITIES FOR THE FROBENIUS NORM
    Peng, Yang
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (02): : 493 - 498
  • [33] LANDAU AND GRUSS TYPE INEQUALITIES FOR INNER PRODUCT TYPE INTEGRAL TRANSFORMERS IN NORM IDEALS
    Jocic, Danko R.
    Krtinic, Dorde
    Moslehian, Mohammad Sal
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (01): : 109 - 125
  • [34] Bell-type inequalities of l1-norm of coherence
    Xue, Guanghao
    Qiu, Liang
    QUANTUM INFORMATION PROCESSING, 2020, 19 (11)
  • [35] Inequalities Involving Essential Norm Estimates of Product-Type Operators
    Devi, Manisha
    Sharma, Ajay K.
    Raj, Kuldip
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [36] Two Weighted Norm Inequalities of Potential Type Operator on Herz Spaces
    Ho, K. -P.
    Yee, T. -l.
    ANALYSIS MATHEMATICA, 2023, 49 (04) : 1041 - 1052
  • [37] TURAN TYPE OSCILLATION INEQUALITIES IN Lq NORM ON THE BOUNDARY OF CONVEX DOMAINS
    Glazyrina, Polina Yu.
    Revesz, Szilard Gy
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (01): : 149 - 180
  • [38] Sharp norm estimates for composition operators and Hilbert-type inequalities
    Brevig, Ole Fredrik
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2017, 49 (06) : 965 - 978
  • [39] Weighted norm inequalities for oscillatory integrals with finite type phases on the line
    Bennett, Jonathan
    Harrison, Samuel
    ADVANCES IN MATHEMATICS, 2012, 229 (04) : 2159 - 2183
  • [40] Weighted norm inequalities for operators of potential type and fractional maximal functions
    Sawyer, ET
    Wheeden, RL
    Zhao, SY
    POTENTIAL ANALYSIS, 1996, 5 (06) : 523 - 580