Spatial economic analysis in data-rich environments

被引:23
|
作者
Bell, Kathleen P. [1 ]
Dalton, Timothy J. [1 ]
机构
[1] Univ Maine, Dept Resource Econ & Policy, Orono, ME 04469 USA
关键词
agricultural land values; land-use change; spatial dependence; spatial econometrics; technology adoption;
D O I
10.1111/j.1477-9552.2007.00123.x
中图分类号
F3 [农业经济];
学科分类号
0202 ; 020205 ; 1203 ;
摘要
Controlling for spatial effects in micro-level studies of consumer and producer behaviour necessitates a range of analytical modifications. These range from modest changes in data collection and the definition of variables to dramatic changes in the modelling of consumer and producer decision-making. This paper discusses conceptual, empirical and data issues involved in modelling the spatial aspects of economic behaviour in data-rich environments. Attention is given to established and emerging agricultural economic applications of spatial data and spatial econometric methods at the micro-scale. Recent applications of individual and household data are featured, including models of land-use change at the urban-rural interface, agricultural land values, and technological change and technology adoption.
引用
收藏
页码:487 / 501
页数:15
相关论文
共 50 条
  • [31] Backstepping Methodology to Troubleshoot Plant-Wide Batch Processes in Data-Rich Industrial Environments
    Zuecco, Federico
    Cicciotti, Matteo
    Facco, Pierantonio
    Bezzo, Fabrizio
    Barolo, Massimiliano
    [J]. PROCESSES, 2021, 9 (06)
  • [32] Leveraging data-rich technologies in process development
    Christensen, Melodie
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [33] Ecological forecasting and data assimilation in a data-rich era
    Luo, Yiqi
    Ogle, Kiona
    Tucker, Colin
    Fei, Shenfeng
    Gao, Chao
    LaDeau, Shannon
    Clark, James S.
    Schimel, David S.
    [J]. ECOLOGICAL APPLICATIONS, 2011, 21 (05) : 1429 - 1442
  • [34] Citizen Empowerment and Innovation in the Data-Rich City
    Oliveira, Eduardo
    [J]. JOURNAL OF URBAN TECHNOLOGY, 2017, 24 (02) : 111 - 114
  • [35] Dynamic flow experiments for data-rich optimization
    Williams, Jason D.
    Sagmeister, Peter
    Kappe, C. Oliver
    [J]. CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2024, 47
  • [36] COMPARISON OF SEVERAL METEOROLOGICAL ANALYSIS SCHEMES OVER A DATA-RICH REGION
    OTTOBLIESNER, B
    BAUMHEFNER, DP
    SCHLATTER, TW
    BLECK, R
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 1976, 57 (01) : 172 - 172
  • [37] Piloting personalization research through data-rich environments: a literature review and future research agenda
    Mehmood, Khalid
    Verleye, Katrien
    De Keyser, Arne
    Lariviere, Bart
    [J]. JOURNAL OF SERVICE MANAGEMENT, 2023, 34 (03) : 520 - 552
  • [38] SPEDRE: a web server for estimating rate parameters for cell signaling dynamics in data-rich environments
    Nim, Tri Hieu
    White, Jacob K.
    Tucker-Kellogg, Lisa
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (W1) : W187 - W191
  • [39] Linking Data-Rich Environments with Service Innovation in Incumbent Firms: A Conceptual Framework and Research Propositions
    Troilo, Gabriele
    De Luca, Luigi M.
    Guenzi, Paolo
    [J]. JOURNAL OF PRODUCT INNOVATION MANAGEMENT, 2017, 34 (05) : 617 - 639
  • [40] Leveraging the Wisdom of Crowds in a Data-Rich Utopia
    Iyer, Ravi
    Graham, Jesse
    [J]. PSYCHOLOGICAL INQUIRY, 2012, 23 (03) : 271 - 273