On the oscillation of eigenvector functions of the one-dimensional Dirac operator

被引:3
|
作者
Aliev, Z. S. [1 ,2 ]
Rzaeva, Kh. Sh. [3 ]
机构
[1] Baku State Univ, Mech & Math Fac, Ul Z Khalilova 23, AZ-1148 Baku, Azerbaijan
[2] Natl Acad Sci Azerbaijan, Inst Math & Mech, Ul B Vahabzadeh 9, AZ-1141 Baku, Azerbaijan
[3] Ganja State Univ, Fac Math & Comp Sci, Pr SI Khatai 187, AZ-2000 Ganja, Azerbaijan
关键词
SYSTEM;
D O I
10.1134/S1064562416040128
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A spectral problem for the one-dimensional Dirac system is considered. The question of the number of zeros for the components of the eigenvector functions of this problem is studied.
引用
收藏
页码:401 / 405
页数:5
相关论文
共 50 条
  • [41] Superstatistical properties of the one-dimensional Dirac oscillator
    Boumali A.
    Serdouk F.
    Dilmi S.
    [J]. Physica A: Statistical Mechanics and its Applications, 2020, 553
  • [42] Path integral for one-dimensional Dirac oscillator
    Rekioua, R.
    Boudjedaa, T.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2007, 49 (04): : 1091 - 1098
  • [43] One-dimensional Coulomb problem in Dirac materials
    Downing, C. A.
    Portnoi, M. E.
    [J]. PHYSICAL REVIEW A, 2014, 90 (05):
  • [44] TOPOLOGICAL INVARIANTS FOR ONE-DIMENSIONAL DIRAC OPERATORS
    HIRAYAMA, M
    [J]. PHYSICS LETTERS B, 1985, 156 (3-4) : 225 - 230
  • [45] THE ONE-DIMENSIONAL DIRAC EQUATION WITH CONCENTRATED NONLINEARITY
    Cacciapuoti, Claudio
    Carlone, Raffaele
    Noja, Diego
    Posilicano, Andrea
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (03) : 2246 - 2268
  • [46] One-dimensional Dirac oscillator in a thermal bath
    Pacheco, MH
    Landim, RR
    Almeida, CAS
    [J]. PHYSICS LETTERS A, 2003, 311 (2-3) : 93 - 96
  • [47] The Dirac particle in a one-dimensional “hydrogen atom”
    K. A. Sveshnikov
    D. I. Khomovskii
    [J]. Moscow University Physics Bulletin, 2012, 67 : 358 - 363
  • [48] Pair states in one-dimensional Dirac systems
    Hartmann, R. R.
    Portnoi, M. E.
    [J]. PHYSICAL REVIEW A, 2017, 95 (06)
  • [49] ABSENCE OF DECAY AND EIGENVECTOR LOCALIZATION IN A SOLUBLE ONE-DIMENSIONAL SYSTEM
    STEY, GC
    GUSMAN, G
    [J]. PHYSICS LETTERS A, 1972, A 39 (05) : 393 - &
  • [50] Optical parametric oscillation in one-dimensional microcavities
    Lecomte, Timothee
    Ardizzone, Vincenzo
    Abbarchi, Marco
    Diederichs, Carole
    Miard, Audrey
    Lemaitre, Aristide
    Sagnes, Isabelle
    Senellart, Pascale
    Bloch, Jacqueline
    Delalande, Claude
    Tignon, Jerome
    Roussignol, Philippe
    [J]. PHYSICAL REVIEW B, 2013, 87 (15)