A reaction-diffusion type mathematical model for the formation of coral patterns

被引:2
|
作者
Somathilake, L. W. [1 ]
Wedagedera, J. R. [2 ]
机构
[1] Univ Ruhuna, Fac Sci, Dept Math, Matara, Sri Lanka
[2] Simcyp CERTARA Ltd, Blades Enterprise Ctr, Sheffield S2 4SU, S Yorkshire, England
关键词
Pattern formation; reaction-diffusion equations; spatial temporal; Turing instability; MORPHOGENESIS; MADRACIS; GROWTH;
D O I
10.4038/jnsfsr.v42i4.7733
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A reaction-diffusion type mathematical model for the growth of corals in a tank has been proposed based on the model suggested by Mistr and Bercovici, emphasizing the effect of nutrient concentration and domain size on growth patterns. The Turing type pattern formation of the proposed model has been considered and the pattern formation parameter spaces (Turing spaces) of the model were determined. The model is solved numerically when the parameters lie in Turing space and the results are represented graphically. These numerical solutions resemble branching structures of some branching corals. It has been observed that the behaviour of the branching structures vary with parameter values as well as the considered domain size (dimensions of the tank).
引用
收藏
页码:341 / 349
页数:9
相关论文
共 50 条
  • [1] Mathematical properties of models of the reaction-diffusion type
    Beccaria, M
    Soliani, G
    [J]. PHYSICA A, 1998, 260 (3-4): : 301 - 337
  • [2] A reaction-diffusion mathematical model on mild atherosclerosis
    Mukherjee, Debasmita
    Guin, Lakshmi Narayan
    Chakravarty, Santabrata
    [J]. MODELING EARTH SYSTEMS AND ENVIRONMENT, 2019, 5 (04) : 1853 - 1865
  • [3] REACTION-DIFFUSION CELLULAR-AUTOMATA MODEL FOR THE FORMATION OF LIESEGANG PATTERNS
    CHOPARD, B
    LUTHI, P
    DROZ, M
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (09) : 1384 - 1387
  • [4] On the formation of acceleration and reaction-diffusion wavefronts in autocatalytic-type reaction-diffusion systems
    Needham, DJ
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 2006, 71 (03) : 446 - 458
  • [5] Turing patterns in a reaction-diffusion epidemic model
    Jia, Yanfei
    Cai, Yongli
    Shi, Hongbo
    Fu, Shengmao
    Wang, Weiming
    [J]. INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2018, 11 (02)
  • [6] A reaction-diffusion system of λ-ω type -: Part I:: Mathematical analysis
    Blowey, JF
    Garvie, MR
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2005, 16 : 1 - 19
  • [7] Dynamics for a type of general reaction-diffusion model
    Wang, Xiao
    Li, Zhixiang
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (09) : 2699 - 2711
  • [8] A Semi-Automatic Numerical Algorithm for Turing Patterns Formation in a Reaction-Diffusion Model
    Campagna, Rosanna
    Cuomo, Salvatore
    Giannino, Francesco
    Severino, Gerardo
    Toraldo, Gerardo
    [J]. IEEE ACCESS, 2018, 6 : 4720 - 4724
  • [9] Unstable patterns in reaction-diffusion model of early carcinogenesis
    Marciniak-Czochra, Anna
    Karch, Grzegorz
    Suzuki, Kanako
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 99 (05): : 509 - 543
  • [10] Analysis and numerical simulation of a reaction-diffusion mathematical model of atherosclerosis
    Mukherjee, Debasmita
    Mukherjee, Avishek
    [J]. MODELING EARTH SYSTEMS AND ENVIRONMENT, 2023, 9 (03) : 3517 - 3526