Dynamics for a type of general reaction-diffusion model

被引:37
|
作者
Wang, Xiao [1 ]
Li, Zhixiang [1 ]
机构
[1] Natl Univ Defense Technol, Dept Syst Sci & Math, Changsha 410073, Peoples R China
关键词
reaction-diffusion equation; global attractivity; oscillation;
D O I
10.1016/j.na.2006.09.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the following reaction-diffusion model which is a general form of many population models partial derivative u(t,x)/partial derivative t = Delta u(t,x) - delta u(t,x) + f(u(t - tau,x)). We study the oscillatory behavior of solutions about the positive equilibrium K of system (*) with Neumann boundary conditions. Sufficient and necessary conditions are obtained for global attractivity of the zero solution and acceptable conditions are established for the global attractivity of K. These results improve and complement existing results for system (*) without diffusion. Moreover, when these results are applied to the diffusive Nicholson's blowflies model and the diffusive model of Hematopoiesis, some new results are obtained for the latter. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2699 / 2711
页数:13
相关论文
共 50 条
  • [1] Dynamics of a reaction-diffusion SIRS model with general incidence rate in a heterogeneous environment
    Avila-Vales, Eric
    Perez, Angel G. C.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01):
  • [2] Global dynamics of a reaction-diffusion waterborne pathogen model with general incidence rate
    Zhou, Jinling
    Yang, Yu
    Zhang, Tonghua
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (01) : 835 - 859
  • [3] Global dynamics of a reaction-diffusion malaria model
    Xin, Ming-Zhen
    Wang, Bin-Guo
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 61
  • [4] On the dynamics of a nonlinear reaction-diffusion duopoly model
    Rionero, Salvatore
    Torcicollo, Isabella
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2018, 99 : 105 - 111
  • [5] On the nonlinear dynamics of an ecoepidemic reaction-diffusion model
    Capone, Florinda
    De Luca, Roberta
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2017, 95 : 307 - 314
  • [6] Complex dynamics of a reaction-diffusion epidemic model
    Wang, Weiming
    Cai, Yongli
    Wu, Mingjiang
    Wang, Kaifa
    Li, Zhenqing
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (05) : 2240 - 2258
  • [7] Stability of a general reaction-diffusion HIV-1 dynamics model with humoral immunity
    A. D. AlAgha
    A. M. Elaiw
    [J]. The European Physical Journal Plus, 134
  • [8] Stability of a general reaction-diffusion HIV-1 dynamics model with humoral immunity
    AlAgha, A. D.
    Elaiw, A. M.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (08):
  • [9] A general reaction-diffusion model of acidity in cancer invasion
    McGillen, Jessica B.
    Gaffney, Eamonn A.
    Martin, Natasha K.
    Maini, Philip K.
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2014, 68 (05) : 1199 - 1224
  • [10] Dynamics on a degenerated reaction-diffusion Zika transmission model
    Ren, Xinzhi
    Wang, Kaifa
    Liu, Xianning
    [J]. APPLIED MATHEMATICS LETTERS, 2024, 150