A splitting iterative method for α-β generalized inverse and singular linear system

被引:0
|
作者
Cai, J
Chen, GL [1 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
[2] Huzhou Teachers Coll, Dept Math, Huzhou 313000, Peoples R China
关键词
essentially strictly convex norms; alpha - beta generalized inverse; splitting method;
D O I
10.1016/S0096-3003(02)00481-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the case when the alpha - beta generalized inverse A(alpha,beta)((-1)) is a linear transformation, in which case we give a splitting iterative method for A(alpha,beta)((-1)) We also show that in the case of linear transformation, the alpha - beta generalized inverse A(alpha,beta)((-1)) is a {1, 2}-inverse of the matrix A with prescribed range and null space, based on which we propose a iterative method of calculating the unique alpha-approximate solution of minimal beta-norm of the system Ax = b. The results extend some previous results about the Moore-Penrose inverse A(+) and the weighted Moore-Penrose inverse A(M,N)(+). (C) 2002 Elsevier Inc. All rights reserved.
引用
收藏
页码:221 / 232
页数:12
相关论文
共 50 条
  • [31] Generalized Hermitian and skew-Hermitian splitting iterative method for image restoration
    Aghazadeh, Nasser
    Bastani, Mehdi
    Salkuyeh, Davod Khojasteh
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (20) : 6126 - 6138
  • [32] A note on the singular linear system of the generalized finite element methods
    Cho, Durkbin
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (15) : 6691 - 6699
  • [33] An iterative method for the positive real linear system
    Li, CJ
    Liang, XL
    Evans, DJ
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2001, 78 (01) : 153 - 163
  • [34] Iterative Method for Solving a System of Linear Equations
    Kryshchuk, Mykola
    Lavendels, Jurijs
    ICTE 2016, 2017, 104 : 133 - 137
  • [35] Iterative learning control for linear generalized distributed parameter system
    Yingjun Zhang
    Yinghui Li
    Mengji Chen
    Neural Computing and Applications, 2019, 31 : 4503 - 4512
  • [36] Iterative learning control for linear generalized distributed parameter system
    Zhang, Yingjun
    Li, Yinghui
    Chen, Mengji
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (09): : 4503 - 4512
  • [37] Structured perturbations of group inverse and singular linear system with index one
    Diao, H
    Wei, YM
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 173 (01) : 93 - 113
  • [38] A hyperpower iterative method for computing the generalized Drazin inverse of Banach algebra element
    Shwetabh Srivastava
    Dharmendra K Gupta
    Predrag Stanimirović
    Sukhjit Singh
    Falguni Roy
    Sādhanā, 2017, 42 : 625 - 630
  • [39] NUMERICAL PROPERTIES OF AN ITERATIVE METHOD FOR COMPUTING MOORE-PENROSE GENERALIZED INVERSE
    SODERSTROM, T
    STEWART, GW
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1974, 11 (01) : 61 - 74
  • [40] A hyperpower iterative method for computing the generalized Drazin inverse of Banach algebra element
    Srivastava, Shwetabh
    Gupta, Dharmendra K.
    Stanimirovic, Predrag
    Singh, Sukhjit
    Roy, Falguni
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2017, 42 (05): : 625 - 630