Effect of burst pressure on vented hydrogen-air explosion in a cylindrical vessel

被引:114
|
作者
Guo, Jin [1 ]
Li, Quan [2 ]
Chen, Dongdong [2 ]
Hu, Kunlun [1 ]
Shao, Ke [1 ]
Guo, Changming [2 ]
Wang, Changjian [2 ,3 ]
机构
[1] Anhui Univ Sci & Technol, Sch Chem Engn, Huainan 232001, Anhui, Peoples R China
[2] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230027, Anhui, Peoples R China
[3] Hefei Univ Technol, Sch Civil Engn, Hefei 230009, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrogen safety; Explosion venting; Burst pressure; Flame propagation; GAS-EXPLOSIONS; EXTERNAL EXPLOSIONS; OVERPRESSURES; DEFLAGRATIONS; DYNAMICS; IGNITION; VOLUME; DUCT;
D O I
10.1016/j.ijhydene.2015.03.059
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Effect of vent burst pressure on internal pressure and flame evolution is experimentally investigated during explosion venting of rich hydrogen-air mixtures with equivalence ratio of 2 in a cylindrical vessel with a neck. Experimental results show that four pressure peaks are observed at the vessel exit under low vent burst pressures, corresponding to the following four successive stages: the vent failure, the venting of the burned gases, the maximum production rate of burned gas in vessel and the suction of gases into vessel. But under high vent burst pressure, the second and third pressure peaks disappear and the first one becomes dominant. The fourth pressure peak due to suction is kept around several kilopascals. The pressure in vessel is always characterized by single pressure peak which increases with the increase of the vent burst pressure. Under low vent burst pressures, the oscillation of internal flame due to flame-acoustic interaction results in oscillation of pressure rise rate in about 2000 Hz, and the oscillation nearly disappears under high vent burst pressures. The external flame speed does not decrease monotonously as the increase of distance away from the vent, and the maximum length of external flame is nearly independent of vent burst pressure. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:6478 / 6486
页数:9
相关论文
共 50 条
  • [31] Vented deflagration of a hydrogen-air mixture in a rectangular vessel with a hinged aluminum vent panel
    Zhang, Su
    Guo, Jin
    Yang, Fuqiang
    Wang, Jingui
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (40) : 22733 - 22739
  • [32] Prediction of peak overpressure from hydrogen-air cloud explosions in vented cylindrical vessels
    Hu, Qingchun
    Zhang, Xihong
    Hao, Hong
    [J]. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 190 : 1093 - 1104
  • [33] Effects of hydrogen concentration on the vented deflagration of hydrogen-air mixtures in a 1-m3 vessel
    Wang, Jingui
    Guo, Jin
    Yang, Fuqiang
    Zhang, Jiaqing
    Lu, Shouxiang
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (45) : 21161 - 21168
  • [34] Effect of concentration, obstacles, and ignition location on the explosion overpressure of hydrogen-air in a closed-vessel
    Zhuang, Chunji
    Zhang, Lijing
    Tao, Gang
    Zhang, Yanqiong
    Huang, Hui
    Wang, Zhirong
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (61) : 23737 - 23747
  • [35] Effect of ignition location on external explosion in hydrogen-air explosion venting
    Cao, Yong
    Guo, Jin
    Hu, Kunlun
    Xie, Lifeng
    Li, Bin
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (15) : 10547 - 10554
  • [36] Duct-vented hydrogen-air deflagrations: The effect of duct length and hydrogen concentration
    Yang, Fuqiang
    Guo, Jin
    Wang, Changjian
    Lu, Shouxiang
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (45) : 21142 - 21148
  • [37] On the explosion characteristics of hydrogen-air mixtures in a constant volume vessel with an orifice plate
    Wang, Lu-Qing
    Ma, Hong-Hao
    Shen, Zhao-Wu
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (12) : 6271 - 6277
  • [38] Experiments on vented hydrogen-air deflagrations: The influence of hydrogen concentration
    Guo, Jin
    Liu, Xuanya
    Wang, Cliangjian
    [J]. JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2017, 48 : 254 - 259
  • [39] Explosion dynamics of hydrogen-air mixtures in a flat vessel filled with annular obstacles
    Wang, Lu-Qing
    Ma, Hong-Hao
    [J]. FUEL, 2021, 298
  • [40] Explosion dynamics of hydrogen-air mixtures in a flat vessel filled with annular obstacles
    Wang, Lu-Qing
    Ma, Hong-Hao
    [J]. Fuel, 2021, 298