On some extension of Paley Wiener theorem

被引:1
|
作者
N'Da, Ettien Yves-Fernand [1 ]
Kangni, Kinvi [2 ]
机构
[1] Univ Laval, Quebec City, PQ, Canada
[2] Univ Felix Houphouet Boigny, Abidjan, Cote Ivoire
来源
CONCRETE OPERATORS | 2020年 / 7卷 / 01期
关键词
delta-orbital integral; reductive Lie group; spherical Fourier transform of type delta;
D O I
10.1515/conop-2020-0006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Paley Wiener theorem characterizes the class of functions which are Fourier transforms of C-infinity functions of compact support on R-n by relating decay properties of those functions or distributions at infinity with analyticity of their Fourier transform. The theorem is already proved in classical case : the real case with holomorphic Fourier transform on L-2(R), the case of functions with compact support on R-n from Hormander and the spherical transform on semi simple Lie groups with Gangolli theorem. Let G be a locally compact unimodular group, K a compact subgroup of G, and delta an element of unitary dual (K) over cap of K. In this work, we'll give an extension of Paley-Wiener theorem with respect to delta, a class of unitary irreducible representation of K, where G is either a semi-simple Lie group or a reductive Lie group with non empty discrete series after introducing a notion of delta-orbital integral. If delta is trivial and one dimensional, we obtain the classical Paley-Wiener theorem.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 50 条
  • [21] On Paley-Wiener's theorem on Arthur
    Delorme, P
    [J]. ANNALS OF MATHEMATICS, 2005, 162 (02) : 987 - 1029
  • [22] THE PALEY-WIENER THEOREM IN THE ALGEBRA OF MNEMOFUNCTIONS
    RADYNO, YV
    ROMASHEVSKY, AB
    RAMADAN, S
    [J]. DOKLADY AKADEMII NAUK BELARUSI, 1993, 37 (06): : 21 - 23
  • [23] A REMARK ON A TRACE PALEY-WIENER THEOREM
    Muic, Goran
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2020, 308 (02) : 407 - 418
  • [24] A theorem of Paley-Wiener type for ultradistributions
    Musin, I. Kh.
    Fedotova, P. V.
    [J]. MATHEMATICAL NOTES, 2009, 85 (5-6) : 848 - 867
  • [25] Paley Wiener Theorem on a Reductive Lie Group
    Bi, Neantien Claudio Zoto
    Kinvi, Kangni
    [J]. INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2024, 22
  • [26] GENERALIZATION OF THE PALEY WIENER THEOREM IN WEIGHTED SPACES
    LUTSENKO, VI
    YULMUKHAMETOV, RS
    [J]. MATHEMATICAL NOTES, 1990, 48 (5-6) : 1131 - 1136
  • [27] THE PALEY-WIENER THEOREM WITH GENERAL WEIGHTS
    GENCHEV, TG
    HEINIG, HP
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 153 (02) : 460 - 469
  • [28] A Paley–Wiener theorem in extended Gevrey regularity
    Stevan Pilipović
    Nenad Teofanov
    Filip Tomić
    [J]. Journal of Pseudo-Differential Operators and Applications, 2020, 11 : 593 - 612
  • [29] A theorem of Paley-Wiener type for ultradistributions
    I. Kh. Musin
    P. V. Fedotova
    [J]. Mathematical Notes, 2009, 85 : 848 - 867
  • [30] The Paley–Wiener Theorem and Limits of Symmetric Spaces
    Gestur Ólafsson
    Joseph A. Wolf
    [J]. Journal of Geometric Analysis, 2014, 24 : 1 - 31