Chromatin-state discovery and genome annotation with ChromHMM

被引:409
|
作者
Ernst, Jason [1 ,2 ,3 ,4 ,5 ]
Kellis, Manolis [6 ,7 ,8 ]
机构
[1] Univ Calif Los Angeles, Dept Biol Chem, Los Angeles, CA 90024 USA
[2] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90024 USA
[3] Univ Calif Los Angeles, Eli & Edythe Broad Ctr Regenerat Med & Stem Cell, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Johnsson Comprehens Canc Ctr, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90024 USA
[6] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[7] MIT, Comp Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[8] MIT, Artificial Intelligence Lab, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
HUMAN CELL-TYPES; EMBRYONIC STEM-CELLS; HIDDEN MARKOV MODEL; SYSTEMATIC ANNOTATION; ALZHEIMERS-DISEASE; REGULATORY MOTIFS; DNA METHYLATION; GENE-REGULATION; RISK VARIANTS; ENCODE DATA;
D O I
10.1038/nprot.2017.124
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Noncoding DNA regions have central roles in human biology, evolution, and disease. ChromHMM helps to annotate the noncoding genome using epigenomic information across one or multiple cell types. It combines multiple genome-wide epigenomic maps, and uses combinatorial and spatial mark patterns to infer a complete annotation for each cell type. ChromHMM learns chromatin-state signatures using a multivariate hidden Markov model (HMM) that explicitly models the combinatorial presence or absence of each mark. ChromHMM uses these signatures to generate a genome-wide annotation for each cell type by calculating the most probable state for each genomic segment. ChromHMM provides an automated enrichment analysis of the resulting annotations to facilitate the functional interpretations of each chromatin state. ChromHMM is distinguished by its modeling emphasis on combinations of marks, its tight integration with downstream functional enrichment analyses, its speed, and its ease of use. Chromatin states are learned, annotations are produced, and enrichments are computed within 1 d.
引用
收藏
页码:2478 / 2492
页数:15
相关论文
共 50 条
  • [1] Chromatin-state discovery and genome annotation with ChromHMM
    Jason Ernst
    Manolis Kellis
    [J]. Nature Protocols, 2017, 12 : 2478 - 2492
  • [2] ChromHMM: automating chromatin-state discovery and characterization
    Jason Ernst
    Manolis Kellis
    [J]. Nature Methods, 2012, 9 : 215 - 216
  • [3] ChromHMM: automating chromatin-state discovery and characterization
    Ernst, Jason
    Kellis, Manolis
    [J]. NATURE METHODS, 2012, 9 (03) : 215 - 216
  • [4] Discovery and Annotation of Functional Chromatin Signatures in the Human Genome
    Hon, Gary
    Wang, Wei
    Ren, Bing
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (11)
  • [5] Universal chromatin state annotation of the mouse genome
    Ha Vu
    Jason Ernst
    [J]. Genome Biology, 24
  • [6] Universal chromatin state annotation of the mouse genome
    Vu, Ha
    Ernst, Jason
    [J]. GENOME BIOLOGY, 2023, 24 (01)
  • [7] Discovery and characterization of chromatin states for systematic annotation of the human genome
    Ernst, Jason
    Kellis, Manolis
    [J]. NATURE BIOTECHNOLOGY, 2010, 28 (08) : 817 - U94
  • [8] Discovery and Characterization of Chromatin States for Systematic Annotation of the Human Genome
    Ernst, Jason
    Kellis, Manolis
    [J]. RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, 2011, 6577 : 53 - 53
  • [9] Discovery and characterization of chromatin states for systematic annotation of the human genome
    Jason Ernst
    Manolis Kellis
    [J]. Nature Biotechnology, 2010, 28 : 817 - 825
  • [10] Enhancing genome annotation with chromatin
    Schuebeler, Dirk
    [J]. NATURE GENETICS, 2007, 39 (03) : 284 - 285