Application of Artificial Neural Network for Paddy Field Classification using Spatiotemporal Information

被引:0
|
作者
Yamaguchi, Takashi [1 ]
Kishida, Kazuya [1 ]
Nunohiro, Eiji [1 ]
Park, Jong Geol [2 ]
Mackin, Kenneth J. [1 ]
Hara, Keitaro [2 ]
Matsushita, Kotaro [2 ]
Harada, Ippei [2 ]
机构
[1] Tokyo Univ Informat Sci, Dept Informat Syst, Wakaba Ku, Chiba 2658501, Japan
[2] Tokyo Univ Informat Sci, Dept Environm Informat, Wakaba Ku, Chiba 2658501, Japan
关键词
Artificial neural network; Classification; Remote sensing; MODIS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Monitoring changes in paddy field area is important in Asia. For monitoring change in land surface, various applications using different satellites were researched in the field of remote sensing. However monitoring paddy field area with remote sensing is difficult due to the temporal change in land surface, and difference of spatiotemporal characteristics in countries and regions. In this paper, we applied artificial neural network to classify paddy field areas using moderate resolution sensor data that includes spatiotemporal information. Our aim is to automatically generate a paddy field classifier in order to create localized classifiers for each country and region.
引用
收藏
页码:967 / 974
页数:8
相关论文
共 50 条
  • [31] Automatic text classification using an artificial neural network
    de Mello, RF
    Senger, LJ
    Yang, LT
    [J]. HIGH PERFORMANCE COMPUTATIONAL SCIENCE AND ENGINEERING, 2004, 172 : 215 - +
  • [32] AUTOMATED DEFECT CLASSIFICATION USING AN ARTIFICIAL NEURAL NETWORK
    Chady, T.
    Caryk, M.
    Piekarczyk, B.
    [J]. REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 28A AND 28B, 2009, 1096 : 1591 - 1598
  • [33] LEAF DISEASE CLASSIFICATION USING ARTIFICIAL NEURAL NETWORK
    Ishak, Syafiqah
    Rahiman, Mohd Hafiz Fazalul
    Kanafiah, Siti Nurul Aqmariah Mohd
    Saad, Hashim
    [J]. JURNAL TEKNOLOGI, 2015, 77 (17): : 109 - 114
  • [34] Application of artificial neural network for classification of thyroid follicular tumors
    Shapiro, Naum A.
    Poloz, Tatiana L.
    Shkurupij, Viycheslav A.
    Tarkov, Mikhail S.
    Poloz, Vadim V.
    Demin, Alexander V.
    [J]. ANALYTICAL AND QUANTITATIVE CYTOLOGY AND HISTOLOGY, 2007, 29 (02): : 87 - 94
  • [35] Classification of heart abnormalities using artificial neural network
    Saad, Mohd Hanif Md
    Nor, Mohd Jailani Mohd
    Bustami, Fadzlul Rahimi Ahmad
    Ngadiran, Ruzelita
    [J]. Journal of Applied Sciences, 2007, 7 (06) : 820 - 825
  • [36] Wood Defects Classification Using Artificial Neural Network
    de Jesus Ramirez Alonso, Graciela Maria
    Chacon Murguia, Mario Ignacio
    [J]. COMPUTACION Y SISTEMAS, 2005, 9 (01): : 17 - 27
  • [37] CLASSIFICATION OF RIVER BASINS USING ARTIFICIAL NEURAL NETWORK
    Thandaveswara, B. S.
    Sajikumar, N.
    [J]. JOURNAL OF HYDROLOGIC ENGINEERING, 2000, 5 (03) : 290 - 298
  • [38] Ripeness Classification of Bananas Using an Artificial Neural Network
    Mazen, Fatma M. A.
    Nashat, Ahmed A.
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2019, 44 (08) : 6901 - 6910
  • [39] Classification of respiratory sounds by using an artificial neural network
    Sezgin, MC
    Dokur, Z
    Ölmez, T
    Korürek, M
    [J]. PROCEEDINGS OF THE 23RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4: BUILDING NEW BRIDGES AT THE FRONTIERS OF ENGINEERING AND MEDICINE, 2001, 23 : 697 - 699
  • [40] APPLICATION OF AN ARTIFICIAL NEURAL NETWORK FOR THE QUANTITATIVE CLASSIFICATION OF TROCHLEAR DYSPLASIA
    Cho, Kyungjin
    Mueller, Jacobus H.
    Scheffer, Cornie
    Erasmus, Pieter J.
    [J]. JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2013, 13 (04)