Application of Artificial Neural Network for Paddy Field Classification using Spatiotemporal Information

被引:0
|
作者
Yamaguchi, Takashi [1 ]
Kishida, Kazuya [1 ]
Nunohiro, Eiji [1 ]
Park, Jong Geol [2 ]
Mackin, Kenneth J. [1 ]
Hara, Keitaro [2 ]
Matsushita, Kotaro [2 ]
Harada, Ippei [2 ]
机构
[1] Tokyo Univ Informat Sci, Dept Informat Syst, Wakaba Ku, Chiba 2658501, Japan
[2] Tokyo Univ Informat Sci, Dept Environm Informat, Wakaba Ku, Chiba 2658501, Japan
关键词
Artificial neural network; Classification; Remote sensing; MODIS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Monitoring changes in paddy field area is important in Asia. For monitoring change in land surface, various applications using different satellites were researched in the field of remote sensing. However monitoring paddy field area with remote sensing is difficult due to the temporal change in land surface, and difference of spatiotemporal characteristics in countries and regions. In this paper, we applied artificial neural network to classify paddy field areas using moderate resolution sensor data that includes spatiotemporal information. Our aim is to automatically generate a paddy field classifier in order to create localized classifiers for each country and region.
引用
收藏
页码:967 / 974
页数:8
相关论文
共 50 条
  • [1] Artificial neural networks paddy-field classifier using spatiotemporal remote sensing data
    Yamaguchi T.
    Kishida K.
    Nunohiro E.
    Park J.G.
    Mackin K.J.
    Hara K.
    Matsushita K.
    Harada I.
    [J]. Artificial Life and Robotics, 2010, 15 (02) : 221 - 224
  • [2] Application of artificial neural network in food classification
    Debska, B.
    Guzowska-Swider, B.
    [J]. ANALYTICA CHIMICA ACTA, 2011, 705 (1-2) : 283 - 291
  • [3] Application of Neural Network Swarm Optimization for Paddy Field Classification from Remote Sensing Data
    Mori, Kazuma
    Yamaguchi, Takashi
    Park, Jong Geol
    Mackin, Kenneth J.
    [J]. PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL LIFE AND ROBOTICS (AROB 16TH '11), 2011, : 443 - 446
  • [4] Quantifying sub-pixel signature of paddy rice field using an artificial neural network
    Karkee, Manoj
    Steward, Brian L.
    Tang, Lie
    Aziz, Sarnsuzana A.
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2009, 65 (01) : 65 - 76
  • [5] Localization and Classification of Paddy Field Pests using a Saliency Map and Deep Convolutional Neural Network
    Liu, Ziyi
    Gao, Junfeng
    Yang, Guoguo
    Zhang, Huan
    He, Yong
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [6] Localization and Classification of Paddy Field Pests using a Saliency Map and Deep Convolutional Neural Network
    Ziyi Liu
    Junfeng Gao
    Guoguo Yang
    Huan Zhang
    Yong He
    [J]. Scientific Reports, 6
  • [7] Application of neural network swarm optimization for paddy-field classification from remote sensing data
    Mori K.
    Yamaguchi T.
    Park J.G.
    Mackin K.J.
    [J]. Artificial Life and Robotics, 2012, 16 (4) : 497 - 501
  • [8] Eggplant classification using artificial neural network
    Saito, Y
    Hatanaka, T
    Uosaki, K
    Shigeto, K
    [J]. PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 1013 - 1018
  • [9] Classification of Asthma Using Artificial Neural Network
    Badnjevic, A.
    Gurbeta, L.
    Cifirek, M.
    Maijanovic, D.
    [J]. 2016 39TH INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2016, : 387 - 390
  • [10] Classification of coffee using artificial neural network
    Yip, DHF
    Yu, WWH
    [J]. 1996 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION (ICEC '96), PROCEEDINGS OF, 1996, : 655 - 658